Avalon Advanced Materials Inc.(以下简称“公司”或“Avalon”)的管理层讨论与分析(“MDA”)是对公司截至 2022 年 11 月 30 日的三个月(“季度”)的财务业绩的分析。以下信息应与随附的本季度未经审计的简明合并中期财务报表以及截至 2022 年 8 月 31 日的年度合并财务报表和年度信息表一起阅读。本 MDA 于 2023 年 1 月 10 日编制。业务性质和整体表现 Avalon 是一家加拿大矿产开发公司,在加拿大多伦多证券交易所上市,在美国 OTCQB 创业板交易,也在德国法兰克福证券交易所交易。公司寻求通过成为清洁技术关键矿物的多元化、可持续生产商和营销商以及扩大其特种矿产品市场来创造股东价值。 Avalon 主要在加拿大开展业务,拥有多元化的资产基础,使公司能够接触到这些关键矿物的广泛领域,包括锂、稀土元素 (REE)、铯、钽、锡、铟、镓、锗和锆。该公司正处于开发其五种矿产资源中的三种的不同阶段,特别注重锂、铯、钽、锡、铟和稀土。Avalon 继续评估具有近期发展潜力的新机会,例如使用新技术从历史矿山废料中提取关键矿物。这是公司在其东肯普特维尔锡铟项目和安大略省东北部另一个名为 Cargill 的矿场中模拟的机会,在那里有可能从一处已关闭的磷酸盐矿场的尾矿中回收稀土和钪。这一概念吸引了 ESG 投资者和联邦政府越来越多的兴趣,他们现在正在推广“循环经济”,特别是对于废料中含有丰富关键矿物的矿场,但确保进入这些矿场仍然具有挑战性。该公司所有三个先进项目都拥有大量矿产资源和初步经济评估,下一步是确定矿产产品的市场和/或处理大宗样品以展示适当的提取工艺并生产产品样品供客户评估。技术进步可能会突然为某些关键矿物创造新的需求,如果能够迅速做出反应以满足新的需求,就会为新生产商提供机会。一个众所周知的例子是“磁铁稀土”钕和镨(“Nd-Pr”)的需求突然增长,再加上中国控制稀土供应链导致供应短缺的风险。公司已将可持续发展原则作为其业务实践的核心,并坚定承诺实施企业社会责任 (CSR) 最佳实践。2022 年 12 月,公司发布了第 11 份年度综合可持续发展报告(“2022 年可持续发展报告”),并于 2021 年 2 月在 Sustainalytics 的同行公司中获得了前 5% 的 ESG 风险评级。公司还入选了 Benchmark Minerals 的首届全球锂 ESG 排名,位列全球前 5%。公司认为,由于其寻求生产的清洁技术材料产品(尤其是锂、铯、钽、稀土、锆和锡)在包括锂离子电池、电动汽车、电子产品、小型模块化反应堆和航空航天在内的新技术应用中至关重要,因此工业对其寻求生产的清洁技术材料产品(尤其是锂、铯、钽、稀土、锆和锡)的需求正在增长。
摘要 半导体行业高度依赖稀土元素 (REE),因为稀土元素具有增强半导体器件性能的独特性质。稀土元素包括镧系元素、钇和钪,在从生产强力磁铁到改进显示技术和气体传感能力等各种工艺中都至关重要。然而,全球稀土供应主要集中在中国,占产量的 90% 以上。这种集中对依赖从中国进口关键材料的美国半导体行业构成了重大风险。尽管美国努力实现来源多元化并发展国内能力,但由于缺乏加工基础设施和环境挑战,美国仍然脆弱不堪。本文探讨了全球稀土供应链的现状,重点关注美国对外国进口的依赖。通过情景规划和战略建议,该研究提供了有关美国如何加强国内供应链并减少对外国稀土元素的依赖,从而增强其在全球半导体市场的竞争力的见解。
Structural and spectroscopic correlation in barium-boro-tellurite glass hosts: effects of Dy 2 O 3 doping S. F. Hathot a,* , B. M. Al Dabbagh a , H. Aboud b a Applied Science Dep, University of Technology, Baghdad, Iraq b Faculty of science- physics Dep, college of Science, Al-Mustansiriya University, Iraq In this study, a series of通过熔融液化方法制成的含有不同浓度的Dy 2 O 3掺杂(0至1.25 mol%)的钡 - 硼酸盐玻璃宿主是不同的。进行了一项研究,以研究Dy 2 O 3掺杂剂如何影响玻璃的物理和光谱性状。原材料包括氧化钡(BAO),泰他二氧化氢(TEO 2),氧化硼(B 2 O 3)和氧化钠(DY 2 O 3),用于生产这些眼镜。XRD模式显示出宽阔的驼峰和远程周期性晶格排列,表明它们的性质。拉曼光谱分析显示了各种振动模式,其中最强烈的带是由300 cm-1和450 cm-1在TE – O-TE内部链链桥的对称拉伸振动模式对应的最强烈的带引起的。750 cm-1处的峰值是由于TEO 4和TE-O-TE振动模式引起的。光条间隙能的值从3.155降低至2.1894 eV,然后在较高的DY 2 O 3水平(0.75至1.25 mol%)下增加。在390、424、452、452、750、797、895和1092 nm之间观察到0.25至1.25 mol%之间的Div>在0.25至1.25 mol%之间观察到。 使用DUFFY和INGRAM方程计算了所提出的玻璃宿主的光学碱度,随着掺杂含量的增加而降低。。使用DUFFY和INGRAM方程计算了所提出的玻璃宿主的光学碱度,随着掺杂含量的增加而降低。将玻璃折射率从2.3563升至2.6584,然后在较高的DY 2 O 3含量下降低,这主要是由于玻璃基质中产生了更多的桥接氧(BO)。使用Lorentz-lorenz方程计算得出的玻璃电子极化率和氧化离子极化性的值随着DY 2 O 3含量的上升幅度下降,这归因于较少的非桥接氧(NBO)的存在。此外,随着DY +3水平的增加,光传递增加并减少了反射损失。1以下的金属化参数的值证明了制备样品的真实非晶性质。所有玻璃杯均揭示了由于4F9/2→6H15/2而引起的蓝色和黄色光致发光发射峰,分别在DY 3+中分别在4f9/2→6H15/2和4F9/2→6H13/2过渡中。所提出的玻璃成分可能有益于固态激光器的发展。(2023年11月23日收到; 2024年2月22日接受)关键词:DY 2 O 3掺杂,拉曼光谱,结构,吸收,排放1.引言由Teo 2作为宿主制成的泰瑞尔玻璃系统在过去几年中一直引起人们的兴趣,因为与氧化物玻璃杯相比,化学和物理特性增强了。这些玻璃具有较大的热电常数,红外透射率,介电常数和折射率的值。低声子的能量截止点和熔点;非常高的稀土离子溶解度[1]。基于tellute的玻璃也可以用各种稀土元素掺杂,以获得改进的光学特性,这些光学特性是由稀土离子中电子过渡产生的。当将稀土离子添加到洁牙液玻璃中时,它们可能会导致网络结构的变化,包括形成稀土氧化物簇或具有氧原子的稀土离子的配位2 [2,3]。可以通过结构变化来修改此类玻璃的光谱属性,表明这些特性之间由稀土元素控制的这些特性之间存在很强的相关性。带有稀土离子的tellurite玻璃
关于 Tronox Tronox Holdings plc 是世界领先的优质钛产品生产商之一,产品包括二氧化钛颜料、特种级二氧化钛产品和高纯度钛化学品以及锆石。我们开采含钛矿砂,并运营升级设施,生产高品位的钛原料、生铁和其他矿物,包括含稀土矿物独居石。
Currently, the two main types of batteries installed in electric vehicles (EVs) worldwide are lithium iron phosphate (LFP) batteries, which use lithium iron phosphate (LiFePO 4 ; hereinafter LFP) as the cathode material, and ternary lithium-ion (NMC) batteries, which use a compound consisting primarily of nickel, manganese, and cobalt.LFP电池更安全且价格较低,因为它们使用的较少的稀土(例如钴)具有较低能量密度1的缺点,这会缩短电动汽车的巡航范围。另一方面,尽管NMC电池的能量密度较高,但它们不像LFP电池那样安全,同时也更昂贵,因为它们使用了钴和其他稀土。LFP电池和NMC电池根据其各自的特性进行了区分,前者通常用于低价的EV型号,巡航范围为300 km至500 km,而后者的中产阶级和高价EV型号则用于400 km至700 km。尽管NMC电池目前目前占全球市场份额的大部分,但近年来,LFP电池提供了更好的成本性能,但随着绩效的提高,尤其是在中国的市场份额,尤其是在中国的市场份额。
准晶体(QC)具有独特的晶格结构,具有传统晶体所禁止的旋转对称性。其电学性质尚待完全了解,而磁长程有序是否能在准晶体中实现一直是一个存在已久的问题。最大的困难是缺乏微观理论来分析晶体电场(CEF)对准晶体中稀土原子的影响。这里我们展示了对Tb基准晶体中CEF的完整微观分析。我们发现由CEF引起的磁各向异性对于在Tb原子所在的二十面体上实现独特的磁纹理起着关键作用。我们对基于磁各向异性的最小模型的分析表明,以拓扑电荷为1为特征的刺猬长程有序在Tb基准晶体中是稳定的。我们还发现旋转矩态以异常大的拓扑电荷3为特征。结果表明,通过控制三元化合物中非稀土元素的成分,可以改变磁性结构和拓扑状态。我们的模型有助于理解稀土基量子阱和近似晶体中的磁性和拓扑性质。
拉合尔大学的物理系,巴基斯坦B 53700,B物理学系,工程与应用科学系,Riphah International University,Haji International University,Haji International Complex I-14,伊斯兰堡,巴基斯坦C物理学系,伊斯兰堡C.box 84428,riyadh 11671,沙特阿拉伯,含铅二酰基的铅掺杂合金的磁性,电子和结构特性与通用公式PRPB x bi 1-x(x = 0,0.25,0.55,0.50,0.75,0.75,0.75,1.0)的作用(在该论文中)为了分析物理特性,我们执行了全电位线性的增强平面波和本地轨道(FPLAPW+LO)技术,而在Perdew-Burke-ernzererection(Perdew-burke-ernzererfore)扩展了Kohn-Sham方程(KSE)中的Exchange-Crolsation势能。通过通过Murnaghan的状态方程拟合总能量来计算结构参数,晶格常数,体积,大量模量,压力衍生物和能量。从自旋极化计算中报道了化合物的结构稳定性。在多数和少数式旋转中都计算了这些化合物状态状态的电子能带以及总和的部分密度,将其描述为金属。PR(5D +4F)和(PB +BI)2P状态的相似光谱强度占对费米能水平附近状态密度的大部分贡献。针对掺杂化合物的超细胞计算的自旋磁矩表明它们是磁性材料。从PRBI化合物中自旋磁矩的比较中,我们注意到掺入PRBI化合物后的磁矩有所改善。(2024年2月11日收到; 2024年6月10日接受)关键词:密度功能理论,自旋磁矩,穆纳格汉(Murnaghan)状态方程,广义梯度近似,praseodymium铅biSusthide 1。引言即使各种稀土(Re)硫代基因和pnictides具有直接的NaCl(岩石盐)结构,但它们的磁性和电子特性极大地吸引了研究人员的好奇心[1]。另一方面,科学家当前的重点一直在寻找用于晚期旋转设备的新型稀土材料[2-5]。在从III-V半导体外上ed出现固体材料的发展之后,最近对这些固体材料的研究的关注得到了极大的增强[6]。结果,发现了一种创建电气设备(例如金属基晶体管)的方法。由于高铁在核冷却中的潜在用途以及在温度较低的情况下对混合核秩序和电子现象的研究[7],粉红色果仁氏蛋白酶引起了极大的兴趣。通过根据其价值对稀土和相关复合材料进行分类,可以对其物理特性进行基本描述。价值修饰可以与稀土晶格参数的变化有关[8]。元素的定期表将praseodymium靠近葡萄园,这是铜的几个独特特征,以及其 *通讯作者的特征:zmelqahtani@pnu.edu.edu.sa https://doii.org//doi.org/10.15251/djnb.202222224.192.8557
研究计划包括与美国国立卫生研究院的数据和计算合作、下一代生物学、稀土和分离科学以及战略加速器技术。2021 财年预算申请还提议为新成立的人工智能和技术办公室提供 490 万美元的资金,该办公室是该部门在人工智能和机器学习领域开发、协调和执行整个企业工作的中心。