(onasengene abeparvovec)获得FDA和EMA的批准,用于体内腺相关病毒介导的基因替代疗法,用于脊柱肌肉萎缩。EMA批准Libmeldy®不久,这是一种用慢病毒载体转导的自体CD34阳性干细胞的体内基因疗法,用于治疗定向白细胞症。这些成功可能是发展中许多新的基因疗法的首次,这些基因疗法主要是针对基因置换术的丧失功能丧失突变疾病(例如,甲状腺癌疾病,粘多糖糖糖,神经节蛋白),或者较少,较少的毒性突变疾病,通过毒性 - 官能突变疾病,通过毒性突变疾病,通过疗法的疗法(及其疗法)的疗法(及其疗法)(amp ef)(am)。硬化症,亨廷顿氏病)。此外,正在探索某些疾病的基因组编辑作为基因疗法的使用,但到目前为止,这种疾病仅在治疗粘多糖治疗时才进行了临床测试。基于针对罕见的遗传中枢神经系统疾病的大量计划,持续和完成的临床试验,可以预期,几种新型基因疗法将获得批准并在不久的将来获得。对于这种情况的深入表征,对应用基因治疗平台的短期和长期影响,安全方面和药效学的深入表征。
Johnathan Cooper-Knock,1,10,* Sai Zhang,2 Kevin P. Kenna,3 Tobias Moll,1 John P. Franklin,1 Samantha Allen,1 Helia Ghahremani Nezhad,1 Alfredo Iacoangeli,4 Nancy Y. Yacovzada,5 Chen Eitan,5 Eran Hornstein,5 Eran Elhaik,6 Petra Celadova,7 Daniel Bose,7 Sali Farhan,8 Simon Fishilevich,5 Doron Lancet,5 Karen E. Morrison,9 Christopher E. Shaw,4 Ammar Al-Chalabi,4 Project MinE ALS Sequencing Consortium,Jan H. Veldink,3 Janine Kirby,1 Michael P. Snyder,2 和 Pamela J. Shaw 1,* 1 谢菲尔德转化神经科学研究所 (SITraN),谢菲尔德大学谢菲尔德,英国谢菲尔德 2 斯坦福基因组学和个性化医学中心,斯坦福大学医学院遗传学系,斯坦福,CA 94305,美国 3 神经病学系,鲁道夫马格努斯脑中心,乌得勒支大学医学中心,乌得勒支,荷兰 4 基础和临床神经科学系,精神病学、心理学和神经科学研究所,伦敦国王学院,伦敦,英国 5 分子遗传学系,魏茨曼科学研究所,雷霍沃特,以色列 6 生物系,隆德大学,隆德,瑞典 7 谢菲尔德大学谢菲尔德核酸研究所,谢菲尔德,英国 8 分析和转化遗传学部门,医学系,麻省总医院和哈佛医学院,美国马萨诸塞州波士顿 9 南安普顿大学医学院,南安普顿,英国 10 主要联系人 * 通讯地址: j.cooper-knock@sheffield.ac.uk (JC-K.), pamela.shaw@sheffield.ac.uk (PJS)
在分析电子健康记录(EHR)数据时,通常会遇到具有大量稀有二进制特征的统计学习,尤其是在具有先前医疗诊断和程序的疾病建模时。处理所产生的高度稀疏和大规模的二进制特征矩阵是众所周知的具有挑战性的,因为传统方法可能缺乏测试和模型拟合中的不一致性,而机器学习方法可能无法产生可解释的结果或临床上有意义的风险因素。为了改善基于EHR的建模并利用疾病分类的自然分层结构,我们提出了针对大规模回归的树木制定特征选择和逻辑方法,具有稀有的二进制特征,在这种情况下,不仅通过稀疏追求来实现降低尺寸,而且还可以通过与逻辑启动子进行逻辑启动子来实现。我们将组合问题转换为线性约束的正则化估计,该估计可以通过理论上的构造实现可扩展的计算。在具有EHR数据的自杀风险研究中,我们的方法能够选择和汇总以诊断疾病的诊断层次结构为指导的先前的心理健康诊断。通过平衡EHR诊断记录的稀有性和特异性,我们的策略都改善了预测和解释。我们确定了重要的高级类别和心理健康状况的子类别,并同时确定每个人都需要与自杀风险相关的特异性水平。
摘要:大西洋子午翻转循环(AMOC)是全球气候的重要组成部分,已知是倾倒元素,因为它可能在全球变暖下崩溃。这项研究的主要目的是使用一种称为轨迹 - 自适应多级分裂(TAMS)的稀有事实算法来计算AMOC在指定时间窗口内崩溃的概率。但是,TAM的效率和准确性取决于分数函数的选择。尽管已知最佳得分函数的定义称为“委员会函数”,但总的来说,不可能先验地计算它。在这里,我们将TAM与下一代储层计算技术相结合,该计算技术从稀有事实算法产生的数据中估计委员会函数。我们在存在两种类型的过渡的AMOC的随机盒模型中测试了这一技术,所谓的快速(F)和慢速(S)过渡。f的结果与使用物理知情得分函数的文献中的结果相比有利。我们表明,使用机器学习的稀有事实算法可以正确估计过渡概率,过渡时间甚至过渡路径,以实现广泛的模型参数。然后,我们将这些结果扩展到同一模型中S转变的更为困难问题。在两种F转型和S转型的情况下,我们还展示了如何解释下一代储层计算技术以检索委员会功能的分析估计。
关于稀有,地方性和药用植物的地理生物研究方法学指南:Ranunculaceae家族阿里贝克·伊迪里斯(Alibek Ydyrys)的案例研究,1,2 Nashtay Mukhitdinov,1 Anna Ivashchenko,3 Zhadyra Ashirova,1 Muratzhan Massimzhan,1 Merimimzhan,1 Merunova,4 Parmanbekova,4 Murat Toktar,5,6 Birlikbay Yeszhanov,1 Marzhanay Ilesbek,1,2 Gulnaz Askerbay 1,2*,*和Raushan Kaparbay 1,2,**对植物群落的抽象综合研究对于保留稀有和有价值的物种的杂物是必不可少的,这些物种是减小数量的稀有物种。 当前,对强劲方法的需求越来越多,以在地球植物,生态监测和林业中进行人口水平的研究。 本文重点介绍了罕见的植物hepatica falconeri,ranunculus polyanthemus L.,ranunculus oxyspermus和ranunculus dilatatus,这些植物属于ranunculaceae家族,并在基于Geobotanical研究发现的Kazakhstan的Tien Shan Mountains中发现了Ranunculaceae家族。 我们介绍了一本手册,该手册既整合了研究环境因素,生物植物,eTopes,phytocenoses,Floral组成以及自然植物和药用植物天然种群状况的传统和现代技术。 这包括评估稀有,地方性和药物的生物量储量的方法,以及评估幼体植物的状态,人口密度以及研究群的解剖学,形态学,植物化学和分子遗传特征。 这些参数受地理变化,微气候条件和土壤特性的影响。关于稀有,地方性和药用植物的地理生物研究方法学指南:Ranunculaceae家族阿里贝克·伊迪里斯(Alibek Ydyrys)的案例研究,1,2 Nashtay Mukhitdinov,1 Anna Ivashchenko,3 Zhadyra Ashirova,1 Muratzhan Massimzhan,1 Merimimzhan,1 Merunova,4 Parmanbekova,4 Murat Toktar,5,6 Birlikbay Yeszhanov,1 Marzhanay Ilesbek,1,2 Gulnaz Askerbay 1,2*,*和Raushan Kaparbay 1,2,**对植物群落的抽象综合研究对于保留稀有和有价值的物种的杂物是必不可少的,这些物种是减小数量的稀有物种。当前,对强劲方法的需求越来越多,以在地球植物,生态监测和林业中进行人口水平的研究。本文重点介绍了罕见的植物hepatica falconeri,ranunculus polyanthemus L.,ranunculus oxyspermus和ranunculus dilatatus,这些植物属于ranunculaceae家族,并在基于Geobotanical研究发现的Kazakhstan的Tien Shan Mountains中发现了Ranunculaceae家族。我们介绍了一本手册,该手册既整合了研究环境因素,生物植物,eTopes,phytocenoses,Floral组成以及自然植物和药用植物天然种群状况的传统和现代技术。这包括评估稀有,地方性和药物的生物量储量的方法,以及评估幼体植物的状态,人口密度以及研究群的解剖学,形态学,植物化学和分子遗传特征。这些参数受地理变化,微气候条件和土壤特性的影响。本文是对地球植物,生物多样性,植物学,生物学,农业和药用植物研究领域研究人员的综合指南。此外,它为制定有效的策略提供了可行的建议,以保护生物多样性的保护,保护和可持续利用。
摘要:烷基锡簇在纳米光刻中用于制造微电子器件。烷基锡 Keggin 家族是整个元素周期表中 Keggin 簇中独一无二的一个,它们似乎更倾向于较低对称性的 β 和 γ 异构体,而不是高度对称的 α 和 ε 异构体。因此,烷基锡 Keggin 家族可能提供有关 Keggin 簇形成和异构化的重要基本信息。我们合成并表征了一种具有四面体 Ca 2+ 中心的新型丁基锡 Keggin 簇,其完整结构为 [(BuSn) 12 (CaO 4 )(OCH 3 ) 12 (O) 4 (OH) 8 ] 2+ (β-CaSn 12 )。合成是一个简单的一步法。广泛的溶液表征包括电喷雾电离质谱、小角度 x 射线散射和多核( 1 H、 13 C 和 119 Sn)NMR,表明 β-CaSn 12 基本上是纯相并且稳定的。这与之前报道的 Na 中心类似物不同,后者总是形成 β 和 γ 异构体的混合物,并且容易相互转化。因此,这项研究澄清了之前对 Na 中心类似物的复杂光谱和晶体学表征的混淆。密度泛函理论计算表明稳定性顺序为 γ-CaSn 12 < γ-NaSn 12 < β-CaSn 12 < β-NaSn 12 ; 类似物总是比 稳定,这与实验一致。这项研究的显著成果包括罕见的四面体 Ca 配位、无 Na 烷基锡簇(对微电子制造很重要)以及对由不同金属阳离子构成的 Keggin 家族的更好理解。
抽象的基因检测在遗传和罕见疾病的诊断和潜在治疗中起着越来越重要的作用,例如Aniridia(这种疾病),导致眼睛异常发育以及对这些疾病的健康状况。由于基因检测是为了准确和早期诊断罕见的遗传疾病,并且在直接至消费者基因组学的背景下,检查有关获得这些服务的访问和报销政策的公众信息至关重要。我们进行了针对性的政策和公众面临的资源搜索。我们对可用于患者社区的恢复来源的分析表明,有关罕见疾病的基因测试的访问和报销几乎没有实用指导。在公众面临基因检测的资源方面的更加清晰度将对患者社区有益,因为它将促进有关该程序的知情选择,减轻与缺乏信息有关的潜在危害,并使患者参与自己的医疗保健。
大规模,手动注释的数据集的可用性在人类姿势估计中具有极大的先进研究,从2D单眼图像估计,这与诸如手势识别和动作识别之类的相关性密切相关。当前数据集(例如[1,16,20])主要包含来自我们所谓的轨道视图的图像,即侧面,前后视图,其中最重要的是,诸如对象或分裂的挑战,例如对象或分裂的挑战。他们专注于日常活动,例如站立,坐着和步行。因此,大部分研究都致力于解决遮挡和专业数据集([19,41]),以评估姿势估计模型在涉及封闭个体的情况下的有效性。不寻常的观点的问题受到了较少的关注。在我们所说的极端观点中(顶部和bot-
是作者/资助者,他已授予Medrxiv的许可证,以永久显示预印本。(未通过同行评审证明)预印版本的版权持有人于2023年9月29日发布。 https://doi.org/10.1101/2023.09.28.23296244 doi:medrxiv preprint
摘要:烷基锡团簇在纳米光刻中用于制造微电子器件。烷基锡 Keggin 家族是整个元素周期表中 Keggin 簇中独一无二的一个;其成员似乎倾向于低对称性的 β 和 γ 异构体,而不是高度对称的 α 和 ε 异构体。因此,烷基锡 Keggin 家族可能为 Keggin 簇的形成和异构化提供重要的基础信息。我们合成并表征了一种具有四面体 Ca 2 + 中心的新型丁基锡 Keggin 簇,其完整结构为 [(BuSn) 1 2 (CaO 4 )- (OCH 3 ) 12 (O) 4 (OH) 8 ] 2+ ( β -CaSn 12 )。该合成是一个简单的一步法。广泛的溶液表征包括电喷雾电离质谱、小角X射线散射和多核( 1 H、 13 C 和 119 Sn)核磁共振,表明β -CaSn 12 基本上是纯相并且稳定的。这与之前报道的Na中心类似物不同,后者总是形成β和γ异构体的混合物,并且容易相互转化。因此,这项研究澄清了之前对Na中心类似物的复杂光谱和晶体学表征的混淆。密度泛函理论计算显示以下稳定性顺序:γ -CaSn 12 < γ -NaSn 12 < β - CaSn 12 < β -NaSn 12。β类似物总是比γ类似物更稳定,这与实验一致。本研究的显著成果包括罕见的四面体 Ca 配位、无 Na 烷基锡簇(对微电子制造很重要)以及对由不同金属阳离子构成的 Keggin 家族的更好理解。■ 简介