氧[17-22],电化学氧化[23,24]和光化学氧化技术[25]已成为替代天然方法。 但是,这些方法具有重要的限制:底物必须是具有不愉快气味的硫醇。 这阻止了他们大规模的广泛使用。 最近,研究工作重点是探索替代试剂,这些试剂比硫醇具有无味和更稳定的优势。 这些替代方法包括氯化磺酰氯[26],磺酰基氢氮[27],二硫化碳[28]和硫酸钠(方案1)[29-32]。 在可用的替代方案中,硫酸钠特别有趣,因为它更稳定,更易于运输,并且广泛用于有机合成[33-37]。 使用亚硫酸钠作为建造二硫化物的起始材料时,通常需要将等效的还原剂引入等效的还原剂,例如PPH 3 [29],HI [30],HPO(OET)2 [31]或铁粉[32]或铁粉[32] 尽管已经进行了许多关于硫酸钠二硫化物合成的研究,但在不使用其他氧化还原试剂的情况下,开发了合成硫酸钠二硫化物的方法的发展仍然是一项具有挑战性的任务。氧[17-22],电化学氧化[23,24]和光化学氧化技术[25]已成为替代天然方法。但是,这些方法具有重要的限制:底物必须是具有不愉快气味的硫醇。这阻止了他们大规模的广泛使用。最近,研究工作重点是探索替代试剂,这些试剂比硫醇具有无味和更稳定的优势。这些替代方法包括氯化磺酰氯[26],磺酰基氢氮[27],二硫化碳[28]和硫酸钠(方案1)[29-32]。在可用的替代方案中,硫酸钠特别有趣,因为它更稳定,更易于运输,并且广泛用于有机合成[33-37]。使用亚硫酸钠作为建造二硫化物的起始材料时,通常需要将等效的还原剂引入等效的还原剂,例如PPH 3 [29],HI [30],HPO(OET)2 [31]或铁粉[32]或铁粉[32]尽管已经进行了许多关于硫酸钠二硫化物合成的研究,但在不使用其他氧化还原试剂的情况下,开发了合成硫酸钠二硫化物的方法的发展仍然是一项具有挑战性的任务。
1大气化学系,Max Planck化学研究所,Mainz 55128,德国; 2大气化学与气候系,物理化学研究所Blas Cabrera,CSIC,马德里28006,西班牙; 3香港理工大学民用与环境工程系,香港999077,中国; 4山东大学环境研究所,中国266000; 5香港科学技术大学环境与可持续发展司,香港999077,中国; 6 Max Planck气象研究所,汉堡,20146年,德国的环境建模小组; 7中国三明日岛大学的Tsinghua深圳国际研究生院环境与生态研究所,中国518000;1大气化学系,Max Planck化学研究所,Mainz 55128,德国; 2大气化学与气候系,物理化学研究所Blas Cabrera,CSIC,马德里28006,西班牙; 3香港理工大学民用与环境工程系,香港999077,中国; 4山东大学环境研究所,中国266000; 5香港科学技术大学环境与可持续发展司,香港999077,中国; 6 Max Planck气象研究所,汉堡,20146年,德国的环境建模小组; 7中国三明日岛大学的Tsinghua深圳国际研究生院环境与生态研究所,中国518000;
氯氮平是唯一获批用于治疗难治性精神分裂症 (TRS) 的药物。目前,关于氯氮平反应变异的预测因子很少,但已知氯氮平代谢会影响治疗反应和不良副作用。本文,我们扩展了之前侧重于常见基因变异的氯氮平代谢全基因组研究,分析了英国2062例服用氯氮平的精神分裂症患者的全外显子组测序数据。我们通过对6585例药代动力学检测的纵向分析,探究了参与氯氮平代谢途径的基因和基因集的罕见基因组变异是否会影响氯氮平代谢物的血浆浓度。我们观察到与药物药代动力学广泛相关的基因集中罕见破坏性编码变异(MAF ≤ 1 %)的负担与血浆中较低的氯氮平(β = − 0.054,SE = 0.019,P 值 = 0.005)浓度之间存在统计学上显着的关联。我们估计,该基因集中单个破坏性等位基因对氯氮平血浆浓度的影响类似于将氯氮平剂量减少约 35 毫克/天。基于基因的分析发现 CYP1A2 中的罕见变异对氯氮平代谢的影响最强(β = 0.324,SE = 0.124,P = 0.009),该基因编码负责将氯氮平转化为去甲氯氮平的酶。我们的研究结果支持以下假设:已知药物代谢酶和转运蛋白的罕见遗传变异可以显着影响氯氮平血浆浓度;这些结果表明,试图预测氯氮平代谢和个性化药物治疗的药物基因组学研究可以从在药物基因中加入除了已经鉴定和归类为 PGx 星号等位基因之外的罕见破坏性变异中受益。
泳池水中的氯与有机化合物发生反应,形成消毒副产物 (DBP),例如单氯胺、二氯胺和三氯胺。氯胺具有挥发性,会释放气体并浓缩在水/空气界面上,游泳者会在此呼吸,导致眼睛灼痛和呼吸问题,从而影响游泳表现和长期健康。氯胺会进一步扩散到游泳池大厅,造成腐蚀和令人讨厌的“氯气味”。
相关的设备,组件和材料,如下:“生物剂”或放射性材料选择或修饰,以提高其在人类或动物的伤亡中的有效性,降解设备或破坏农作物或环境; b。化学战(CW)代理,包括:1。CW神经剂: O-烷基(等于或小于C10,包括环烷基)烷基(甲基,N-丙基或异丙基) - 磷酸氟化物,例如:SARIN(GB):O-异丙基甲基甲基磷酸氟甲酯(CAS 107-44-8);和SOMAN(GD):O pinacolyl甲基膦氟氟甲酯(CAS 96-64-0); b。 O-烷基(等于或小于C10,包括环烷基)N,N-二烷基(甲基,乙基,N-丙基或异丙基)磷酸透明透明盐,例如:TABUN(GA):O-乙基N,N,N-二甲基磷酸羟酯(CAS 77-81-6); c。 O-烷基(H或等于或小于C10,包括环烷基)S-2-二烷基(甲基,乙基,N-丙基或异丙基或异丙基) - 氨基乙基烷基(甲基,N-乙基,N-丙基或异丙基或异丙基)磷酸氨基酚和相应的烷基化和相应的烷基化和固定盐:磷硫硫酸盐(CAS 50782-69-9); 2。CW囊泡剂:a。硫芥末,例如:1。2-氯乙基氯甲基硫化物(CAS 2625-76-5); 2。 bis(2-氯乙基)硫化物(CAS 505-60-2); 3。 bis(2-氯乙基)甲烷(CAS 63869-13-6); 4。 1,2-双(2-氯乙基)乙烷(CAS 3563-36-8); 5。 1,3-双基(2-氯乙基)-n-丙烷(CAS 63905-10-2); 6。 1,4-双基(2-氯乙基)-n丁烷(CAS 142868-93-7); 7。 1,5-双基(2-氯乙基硫醇)-n-戊烷(CAS 142868-94-8); 8。 2-氯维尼德氯苯胺(CAS 541-25-3); 2。2-氯乙基氯甲基硫化物(CAS 2625-76-5); 2。bis(2-氯乙基)硫化物(CAS 505-60-2); 3。bis(2-氯乙基)甲烷(CAS 63869-13-6); 4。1,2-双(2-氯乙基)乙烷(CAS 3563-36-8); 5。1,3-双基(2-氯乙基)-n-丙烷(CAS 63905-10-2); 6。1,4-双基(2-氯乙基)-n丁烷(CAS 142868-93-7); 7。1,5-双基(2-氯乙基硫醇)-n-戊烷(CAS 142868-94-8); 8。2-氯维尼德氯苯胺(CAS 541-25-3); 2。bis(2-氯乙基甲基甲基)醚(CAS 63918-90-1); 9。bis(2-氯乙基乙基)醚(CAS 63918-89-8); b。路易斯特人,例如:1。tris(2-氯环烯基)砷(CAS 40334-70-1); 3。bis(2-氯环烯基)氯氨酸(CAS 40334-69-8); c。氮芥末,例如:1。HN1:双(2-氯乙基)乙胺(CAS 538-07-8); 2。HN2:双(2-氯乙基)甲胺(CAS 51-75-2); 3。HN3:Tris(2-氯乙基)胺(CAS 555-77-1);HN3:Tris(2-氯乙基)胺(CAS 555-77-1);
1. 为什么要对饮用水进行消毒?消毒对于保护消费者免受致病微生物(称为病原体,包括细菌和病毒)的侵害至关重要。消毒剂对灭活病原体非常有效。 2. 沙泉市目前使用的水处理消毒方法是什么?氯胺。作为城市定期维护计划的一部分,沙泉水处理厂将从 2024 年 12 月 3 日起,暂时将消毒过程从氯胺调整为游离氯,为期 6 至 8 周。 3. 什么是氯胺?氯胺是一种长效消毒剂,添加到公共饮用水中用于消毒。它由氯化水与少量氨结合而成。它通常用于许多公共供水系统的消毒。 4. 为什么要使用氯胺?氯胺是一种有效的消毒剂,特别是在高温地区,可以持续很长时间。 5. 氯胺安全吗?是的,用氯胺消毒过的水可以安全饮用、烹饪、沐浴和日常使用。氯胺和氯一样,在用于透析机之前必须从水中去除,并且可能对鱼类和两栖动物有害。适当的过滤器和脱氯产品将解决这些问题。 6. 什么是游离氯转化? 当通常使用氯胺的水系统从其处理过程中去除氨并仅使用氯对水进行消毒时,就会发生游离氯转化。 这种转化是全国许多公共供水系统的常见做法,有助于控制各种形式的微生物。 游离氯转化过程得到了俄克拉荷马州环境质量部 (ODEQ) 和环境保护署 (EPA) 的批准和支持。 7. 在此临时消毒期间是否测试了氯含量? 是的,水的氯含量以及其他化合物会受到持续监测。 8. 在此临时消毒转换过程中,水是否可以安全饮用和使用? 是的,在此期间,水可以安全饮用。市政府建议拥有鱼缸或肾透析服务的客户联系设备供应商或医疗专业人员,以获取进一步的说明和预防措施。 9. 客户会注意到在此过程中水的变化吗?一些客户可能会注意到轻微的氯味或气味。冲洗消防栓时,水也可能有点浑浊或压力下降。 10. 为什么在此过程中要冲洗消防栓?冲洗消防栓有助于使氯消毒过的水更快地通过系统。冲洗还有助于减少氯的气味和味道。 11. 还有其他问题吗?如有疑问或要报告问题,请致电 918-246-2588 联系 Sand Springs 市。
化合物化合物三氯胺(联合氯的一部分)在高浓度下变为致癌,并且会引发哮喘,过敏,皮肤刺激和干燥以及眼睛刺激。这是与游泳池相关的典型“氯”气味后面的com磅。本质上,氯气味强的池表示高水平的结合氯,不健康。此外,三氯胺对游泳池和室内池结构中材料的腐蚀进行了贡献。仅在氯化和填充上进行的池易于耐氯的细菌,例如铜绿假单胞菌,军团菌,大雄杆菌和隐孢子虫。这些细菌可以承受在池中发现的典型氯浓度,并可能引起严重甚至致命的卵形。寄生虫贾尔迪亚·兰布利亚(Giardia Lamblia) - 原因
甲基氯,又称氯甲烷,在生产各种工业产品中起着至关重要的作用。目前,印度尼西亚对甲基氯的需求超过了生产水平,因此设计甲基氯工厂至关重要。本研究重点是通过探索强调能源效率和高纯度的模拟来改善甲基氯的生产,从而提高经济性和可操作性。本研究的目的是开发一种从甲醇和氯化氢生产甲基氯的工艺设计,旨在提高能源效率、建设环保工厂和生产高纯度的甲基氯产品。该研究采用迭代模拟方法比较甲基氯生产的基本工艺和改进工艺。该过程包括使用 Aspen HYSYS 构建模拟模型,使用 Aspen Energy Analyzer V12 分析模拟结果,并迭代调整工艺参数,直到达到所需的性能或结果。研究结果表明,与甲基氯基础工艺相比,甲基氯改进工艺的能耗更低。此外,改进工艺的碳排放量极少,是一种可持续且环保的设计。此外,改进工艺生产的氯甲烷纯度更高。在初始工艺中,氯甲烷纯度为 98.17%,而在改进工艺中,氯甲烷纯度提高到 99.35%。从这三个方面来看,改进工艺比基本工艺系统效率更高。版权所有 © 2024 作者,由 Universitas Diponegoro 和 BCREC Publishing Group 出版。这是一篇根据 CC BY-SA 许可开放获取的文章 (https://creativecommons.org/licenses/by-sa/4.0)。关键词:Aspen HYSYS;脱氢氯化;迭代模拟方法;氯甲烷引用方式:Ahdan, M., Saputra, AR, Ivan, R., Panjaitan, YM (2024)。改进甲醇和氯化氢脱氯化氢工艺设计,实现节能环保,生产高纯度氯甲烷。化学工程研究进展,1 (2),84-90 (doi: 10.9767/jcerp.20090) Permalink/DOI : https://doi.org/10.9767/jcerp.20090
降低阿吡唑抗抑郁药右旋苯丙胺和苯丙胺治疗ADHD CELEXA CETEREXA Citalopram抗抑郁药氯氮胺氯氮骨氯氮宾抗氯唑替合作促氯吡啶甲基植物alleatee抗精神病患者抗精神病药抗精神病药,抗精神病药, ADHD Depakote丙丙酸双极D/O-脱氧军脱氧右苯丙胺治疗ADHD Duo -Duo -Vil amitriptyline和Perphenazine抗磷酸effexor effexor venlafaxine抗抑郁药抗抗酸剂的抗精神抗磷酸酯类的抗磷脂剂量,抗精神病药fazaclo氯氮蛋白抗精神病药脱甲甲酯治疗ADHD地球扎二甲酯治疗)抗精神病药抗抑郁剂抗抑郁药锂治疗双极D/O氯糖烷Loxapine抗精神病药甲状腺素抗氯替嗪抗氯替嗪甲基甲酯治疗ADHD抗抑郁药
以下相关设备、部件和材料: a. 经过选择或改造以增强其对人类或动物造成伤亡、损坏设备或破坏农作物或环境的效力的“生物制剂”或放射性材料; b. 化学战(CW)剂,包括: 1. 化学战神经剂: a. O-烷基(等于或小于 C 10,包括环烷基)烷基(甲基、乙基、正丙基或异丙基)-氟膦酸酯,例如: 沙林(GB):O-异丙基甲基氟膦酸酯(CAS 107-44-8);和 梭曼(GD):O-频哪基甲基氟膦酸酯(CAS 96-64-0); b. : O-烷基(C 10 或以下,包括环烷基)N,N-二烷基(甲基、乙基、正丙基或异丙基)磷酰胺氰酸酯,例如:塔崩(GA):N,N-二甲基磷酰胺氰酸酯(CAS 77-81-6);c. O-烷基(H 或 C 10 或以下,包括环烷基)S-2-二烷基(甲基、乙基、正丙基或异丙基)-氨基乙基烷基(甲基、乙基、正丙基或异丙基)硫代膦酸酯及相应的烷基化和质子化盐,例如:VX:O-乙基 S-2-二异丙基氨基乙基甲基硫代膦酸酯 (CAS 50782-69-9);2. CW 发泡剂:a.硫芥子气,例如:1. 2-氯乙基氯甲基硫化物(CAS 2625-76-5);2. 双(2-氯乙基)硫化物(CAS 505-60-2);3. 双(2-氯乙硫)甲烷(CAS 63869-13-6);4. 1,2-双(2-氯乙硫)乙烷(CAS 3563-36-8);5. 1,3-双(2-氯乙硫)-正丙烷(CAS 63905-10-2);6. 1,4-双(2-氯乙硫)-正丁烷(CAS 142868-93-7);7. 1,5-双(2-氯乙硫)-正戊烷(CAS 142868-94-8); 8. 双(2-氯乙硫基甲基)醚(CAS 63918-90-1); 9. 双(2-氯乙硫基乙基)醚(CAS 63918-89-8); b. 路易氏剂,例如: 1. 2-氯乙烯基二氯胂(CAS 541-25-3); 2. 三(2-氯乙烯基)胂(CAS 40334-70-1); 3. 双(2-氯乙烯基)氯胂(CAS 40334-69-8); c. 氮芥子气,例如: 1. HN1:双(2-氯乙基)乙胺(CAS 538-07-8); 2. HN2:双(2-氯乙基)甲胺(CAS 51-75-2); 3.HN3:三(2-氯乙基)胺(CAS 555-77-1);