简单总结:脑电图为大脑活动提供了宝贵的见解,具有多种医疗用途,包括诊断、监测、药物发现和治疗评估。我们提出了一种人工智能模型,该模型经过独特优化,通过直接处理原始数据来分析脑电图信号。该模型通过空间通道注意和稀疏变压器编码等专用组件捕获脑电图中复杂的空间和时间模式。经过广泛评估,我们的模型在检测脑部疾病和分类精神药物方面表现出很高的准确性。通过自动学习原始脑电图数据的表示,它可以很好地适应疾病、受试者和任务。该模型的端到端学习能力和任务多功能性构成了一个强大且广泛适用的自动脑电图分析解决方案。我们相信它有潜力显著推进基于脑电图的诊断和个性化医疗。
脑机接口(BCI)解读人脑在意识活动过程中的生理信息,建立大脑与外界之间的直接信息传输通道。脑电图(EEG)作为最常见的非侵入式BCI模式,在BCI的情绪识别中起着重要作用;然而,由于EEG信号的个体差异性和非平稳性,针对不同受试者、不同会话和不同设备构建基于EEG的情绪分类器是一个重要的研究方向。领域自适应利用来自多个领域的数据或知识,专注于将知识从源域(SD)转移到目标域(TD),其中EEG数据可能来自不同的受试者、会话或设备。在本研究中,提出了一种新的领域自适应稀疏表示分类器(DASRC)来解决基于EEG的跨域情绪分类问题。为了减少域分布的差异,利用局部信息保留标准将来自SD和TD的样本投影到共享子空间中。在投影子空间中学习一个通用的领域不变字典,从而在 SD 和 TD 之间建立内在联系。此外,还利用主成分分析 (PCA) 和 Fisher 标准来提升学习字典的识别能力。此外,还提出了一种优化方法来交替更新子空间和字典学习。CSFDDL 的比较表明,该方法对于跨受试者和跨数据集的基于 EEG 的情绪分类问题具有可行性和竞争性性能。
摘要 — 可植入脑机接口 (BMI) 在运动康复和移动性增强方面大有可为,它们需要准确且节能的算法。在本文中,我们提出了一种用于可植入 BMI 的回归任务的新型脉冲神经网络 (SNN) 解码器。SNN 通过增强的时空反向传播进行训练,以充分利用其处理时间问题的能力。所提出的 SNN 解码器在离线手指速度解码任务中的表现优于最先进的卡尔曼滤波器和人工神经网络 (ANN) 解码器。解码器部署在基于 RISC-V 的硬件平台上,并经过优化以利用稀疏性。所提出的实现在占空比模式下的平均功耗为 0.50mW。在进行无占空比的连续推理时,它实现了每次推理 1.88 µ J 的能效,比基线 ANN 低 5.5 倍。此外,每次推理的平均解码延迟为 0.12 毫秒,比 ANN 实现快 5.7 倍。
抽象学习绩效数据(例如,测验得分和尝试)对于理解学习者的参与和知识掌握水平而言至关重要。但是,从智能辅导系统(ITS)收集的学习绩效数据通常会遭受稀疏性,从而影响了学习者建模和知识评估的准确性。为了解决这个问题,我们介绍了3DG框架(用于致密化和生成的3维张量),这是一种新型方法,将张量分解与先进的生成模型(包括生成对抗性网络(GAN)和生成性预训练的变压器(GPT))相结合,以增强数据插入和增强数据插入。该框架首先将数据表示为三维张量,从而捕获学习者,问题和尝试的维度。然后,它通过张量分解来致密数据,并使用生成AI模型增强数据,该模型是根据通过聚类识别的个体学习模式量身定制的。由成人扫盲中心(CSAL)中心的自动课程中的数据应用,3DG框架有效地生成了可扩展的,个性化的学习绩效模拟。比较分析揭示了GAN在这种情况下比GPT-4的出色可靠性,强调了其在解决ITS的数据稀少挑战方面的潜力,并有助于进步个性化的教育技术。
抽象学习绩效数据(例如,测验得分和尝试)对于理解学习者的参与和知识掌握水平而言至关重要。但是,从智能辅导系统(ITS)收集的学习绩效数据通常会遭受稀疏性,从而影响了学习者建模和知识评估的准确性。为了解决这个问题,我们介绍了3DG框架(用于致密化和生成的3维张量),这是一种新型方法,将张量分解与先进的生成模型(包括生成对抗性网络(GAN)和生成性预训练的变压器(GPT))相结合,以增强数据插入和增强数据插入。该框架首先将数据表示为三维张量,从而捕获学习者,问题和尝试的维度。然后,它通过张量分解来致密数据,并使用生成AI模型增强数据,该模型是根据通过聚类识别的个体学习模式量身定制的。由成人扫盲中心(CSAL)中心的自动课程中的数据应用,3DG框架有效地生成了可扩展的,个性化的学习绩效模拟。比较分析揭示了GAN在这种情况下比GPT-4的出色可靠性,强调了其在解决ITS的数据稀少挑战方面的潜力,并有助于进步个性化的教育技术。
组织者 2024 年 Sammaniversary 研讨会,庆祝 Saman Amarasinghe 60 岁生日。在麻省理工学院举办。 2024 年稀疏研讨会(原 CTSTA) 汇集稀疏张量代数、图算法和关系代数编程系统领域的顶尖研究人员的研讨会。与 PLDI 在同一地点举行。 2023 年稀疏张量代数编译器技术研讨会 汇集稀疏张量代数编译和计算领域的顶尖研究人员的研讨会。与 PLDI 在同一地点举行。 2019 年稀疏张量代数编译器技术特邀研讨会 邀请来自 11 所大学、6 家公司和 3 个国家实验室的稀疏张量代数编译和计算领域的顶尖研究人员。 2012–2013 年 MIT 编程语言场外务虚会 七位 CSAIL 教授及其研究小组参加。围绕许多简短的演讲重新组织了节目,主持了小组讨论,邀请了外部演讲者,并发表了开幕词。
尖峰神经网络(SNN)在推理过程中在功耗和事件驱动的属性方面具有显着优势。为了充分利用低功耗并提高了这些模型的效率,已经探索了修剪方法,以找到稀疏的SNN,而无需在训练后没有冗余连接。但是,参数冗余仍然会阻碍训练过程中SNN的效率。在人脑中,神经网络的重新布线过程是高度动态的,而突触连接在脑部消除过程中保持相对较少。受到此启发,我们在这里提出了一个名为ESL-SNNS的SNN的有效进化结构学习(ESL)框架,以实现从头开始实施稀疏的SNN训练。SNN中突触连接的修剪和再生在学习过程中动态发展,但将结构稀疏保持在一定水平。因此,ESL-SNN可以通过在时间上列出所有可能的参数来搜索最佳的稀疏连接。我们的实验表明,所提出的ESL-SNNS框架能够有效地学习稀疏结构的SNN,同时降低有限的精度。ESL-SNN仅达到0。在DVS-CIFAR10数据集上具有10%连接密度的28%抗性损失。我们的工作提出了一种全新的方法,可以通过生物学上合理的进化机制对SNN进行稀疏训练,从而缩小了稀疏训练和密集培训之间的明确攻击差距。因此,它具有SNN轻量级训练和低功耗和少量记忆使用情况的巨大潜力。
导航极端:大输出空间中的动态稀疏性。Nasibullah Nasibullah,Erik Schultheis,Mike Lasby,Yani Ioannou,Rohit Babbar。研究了大型输出空间的动态稀疏训练。利用半结构化的稀疏性,中间层和辅助损失,它可以使用数百万个标签的端到端培训。
图稀疏化是大量算法的基础,从切割问题的近似算法到图拉普拉斯算子的线性系统求解器。在其最强形式中,“谱稀疏化”将边数减少到节点数的近似线性,同时近似地保留图的切割和谱结构。在这项工作中,我们展示了谱稀疏化及其许多应用的多项式量子加速。具体而言,我们给出了一种量子算法,给定一个具有 n 个节点和 m 条边的加权图,在亚线性时间内输出 ϵ -谱稀疏器的经典描述 e O ( √ mn/ϵ )。这与最佳经典复杂度 e O ( m ) 形成对比。我们还证明我们的量子算法在多对数因子范围内是最优的。该算法建立在一系列关于稀疏化、图扩展器、最短路径量子算法和 k 向独立随机字符串的有效构造方面的现有成果之上。我们的算法意味着解决拉普拉斯系统和近似一系列切割问题(例如最小切割和最稀疏切割)的量子加速。
稀疏的高斯过程。在稀疏的高斯过程近似过程中已经进行了一系列工作,可以追溯到Snelson和Ghahramani(2006),Qui〜nonero-Candela和Rasmussen(2005)等。这些稀疏方法中的大多数都依赖于一个汇总的一组,称为诱导点,主要是选择这些点的确切方式。在Titsias(2009)中首先考虑了诱导点的变异学习,并被证明会导致显着的性能提高。而不是在非变化稀疏模型中使用近似边缘的GP可能性,而是在确切的GP边际可能性上的下限被得出并用作训练目标。与我们工作相关的另一种方法是Hensman等人的随机变异方法。(2013),作者提出了一个稀疏模型,除了降低GP复杂性外,还可以在小型批次中训练,从而使(极其)大型数据集使用GP模型。