背景:在运动成像(MI)脑电图(EEG)记录以及在脑计算机界面(BCI)应用的MI分类中,常见的空间模式(CSP)已被广泛用于特征外观。BCI通常需要相对较长的脑电图数据来可靠的分类培训。更具体地,在使用一般空间模式进行特征提取之前,使用两个不同类别的训练词典来构造复合词典矩阵,并且在滤波器带中的测试样品的表示形式估计为字典矩阵中列的线性组合。新方法:减轻频率带之间的稀疏小样本(SS)问题。我们为BCI系统中的运动图像提出了一种新型的稀疏组过滤库模型(SGFB)。结果:我们通过基于对非零相关系数的类别表示残差来执行任务。此外,我们还在三个不同的时间窗口中使用约束过滤器频段执行关节稀疏优化,以在多任务学习框架中提取强大的CSP功能。为了验证我们的模型的有效性,我们对BCI竞争的公共EEG数据集进行了实验,以将其与其他竞争方法进行比较。与现有方法的比较:差异
摘要 — 神经系统,更具体地说是大脑,能够简单高效地解决复杂问题,远远超过现代计算机。在这方面,神经形态工程是一个研究领域,专注于模仿控制大脑的基本原理,以开发实现这种计算能力的系统。在这个领域,仿生学习和记忆系统仍然是一个有待解决的挑战,这就是海马体的作用所在。它是大脑中充当短期记忆的区域,允许学习和非结构化、快速存储来自大脑皮层所有感觉核的信息,并随后回忆起来。在这项工作中,我们提出了一种基于海马体的新型仿生记忆模型,该模型能够学习记忆,从提示(与其余内容相关的记忆的一部分)中回忆记忆,甚至在尝试学习具有相同提示的其他记忆时忘记记忆。该模型已在 SpiNNaker 硬件平台上使用脉冲神经网络实现,并进行了一系列实验和测试以证明其正确且符合预期的操作。所提出的基于脉冲的记忆模型仅在收到输入时才会产生脉冲,具有节能效果,并且学习步骤需要 7 个时间步,调用先前存储的记忆需要 6 个时间步。这项工作提出了第一个功能齐全的生物启发式基于脉冲的海马记忆模型的硬件实现,为未来更复杂的神经形态系统的开发铺平了道路。
摘要 - 绘制的Sparsifation是大量算法的基础,范围从剪切问题的近似算法到图形Laplacian中线性系统的求解器。以最强的形式“光谱尖峰”将边缘的数量减少到节点数量的接近线性,同时近似保留了图形的切割和光谱结构。Benczúr和Karger(Stoc'96)的突破性工作以及Spielman和Teng(Stoc'04)表明,在原始图的边缘数量中,Sparsifitation可以在接近线性的时间内最佳地完成Sparsifation。在这项工作中,我们证明了用于光谱尖峰及其许多应用的多项式量子加速。特别是,我们给出了一种量子算法,在给定带有n个节点和m边缘的加权图中,在sublinear时间e O(√mn/ϵ)中输出了对spectral sparsifier的经典描述。我们证明这对小数因素很紧张。The algorithm builds on a string of existing results, most notably sparsification algorithms by Spielman and Srivastava (STOC'08) and Koutis and Xu (TOPC'16), a spanner construction by Thorup and Zwick (STOC'01), a single-source shortest paths quantum algorithm by Dürr et al.(ICALP'04)和Christiani,Pagh和Thorup(Stoc'15)的有效的K-K-wise独立哈希结构。我们的算法意味着用于求解拉普拉斯系统的量子加速,并近似于一系列切割问题,例如切割和最稀少的切割。索引项 - Quantum Computing;量子算法;图理论
2从稀疏的深神经网络到稀疏基质分解22 2.1神经网络简介。。。。。。。。。。。。。。。。。。。。。。。22 2.1.1神经网络的定义。。。。。。。。。。。。。。。。。。。。。。22 2.1.2神经网络的培训问题。。。。。。。。。。。。。。。。。。24 2.2稀疏神经网络的简介。。。。。。。。。。。。。。。。。。。25 2.2.1稀疏神经网络:定义和培训问题。。。。。。25 2.2.2稀疏深神经网络培训的实用方法。。。。。。。。29 2.2.3关于稀疏深神经网络的理论。。。。。。。。。。。。。34 2.3稀疏基质分解及其与稀疏深神经网络的关系。35 2.3.1问题制定和与稀疏深神经网络的第一个关系。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。35 2.3.2稀疏基质分解的算法以及稀疏DNNS训练中与修剪/再培训方法的关系。。。。。。。。。。。36 2.3.3稀疏基质分解的其他应用。。。。。。。。。。。38 2.3.4稀疏基质分解的相关作品。。。。。。。。。。。。。40 2.4固定支持矩阵分解。。。。。。。。。。。。。。。。。。。。。。。44 2.4.1问题公式。。。。。。。。。。。。。。。。。。。。。。。。。。。44 2.4.2固定支持基质分解的动机。。。45 2.4.3固定支持矩阵分解的众所周知的实例。。。。。47 2.5论文的前景。。。。。。。。。。。。。。。。。。。。。。。。。。。。。49
在许多现实世界中,代理商的奖励信号非常稀疏,这使得学习有效的奖励功能以进行奖励构成挑战。为了解决这个问题,我们的方法不仅可以通过非零奖励过渡,而且还采用半监督学习(SSL)技术(SSL)技术以及新的数据增强来学习轨迹空间代表性,从大多数过渡,从而提高奖励奖励Shaping Shaping shaping shaping shaping shaping shaping。Atari和机器人操作中的实验结果表明,我们的方法有效地将奖励概括为稀疏的奖励场景,与好奇心驱动的方法相比,达到更高的最佳分数表现。拟议的双熵数据增强增强了性能,显示出比其他增强方法的最佳分数提高15.8%。
图3:(a)在2。CVO-QRAM算法从CIPSI迭代以及从基态截断(TGS)中得出的状态产生的状态。使用Qeb-和Qeb-和Qubit-pool近似于基态。(b)在相同目标的迭代上,重叠 - adapt-vqe ansatz的保真度。
稀疏门控混合专家网络 (MoE) 在自然语言处理中表现出色。然而,在计算机视觉中,几乎所有高性能网络都是“密集的”,也就是说,每个输入都由每个参数处理。我们提出了一种视觉 MoE (V-MoE),它是 Vision Transformer 的稀疏版本,具有可扩展性,可与最大的密集网络相媲美。当应用于图像识别时,V-MoE 的性能可与最先进的网络相媲美,同时在推理时只需要一半的计算量。此外,我们提出了一种路由算法的扩展,该算法可以对整个批次中每个输入的子集进行优先级排序,从而实现自适应的每幅图像计算。这使得 V-MoE 能够在测试时权衡性能并顺利计算。最后,我们展示了 V-MoE 扩展视觉模型的潜力,并训练了一个 15B 参数模型,在 ImageNet 上达到了 90.35% 的准确率。
*应向谁解决的作者。摘要首次在树木生长模型中引入树木的质量分布。因此,可以研究质量变薄对架子开发的影响。质量稀疏都可以改善财务收益,但效果很小。旋转年龄,木材库存和成熟度直径不会受到质量变薄的影响。裸露的土地估值都不会改变质量稀疏的贡献。造成小效应的原因显然在于单个树木的价值发展。小纸浆树干的相对价值发展很大,因为每卷单位的收获费用随着尺寸增量而减小。,除非质量与增长率相关,否则这种树木不是可行的物体,用于质量稀疏。另一个增强的价值发展阶段是当纸浆树干转向锯布干线时。对于大纸浆树干,优质稀疏是可行的。树木中现有的Sawlog含量稀释了质量变薄对财务收益的影响。如果增长率与质量呈正相关,则结果会发生变化,质量稀疏在所有商业直径类别中都是可行的。关键字picea abies; Pinus sylvestris; betula bubescens;质量分布;增长速度引入是树木是个人的,其生产能力以及其质量特征的不同。2021,2023,Niemistö等。2018,Mäkinen等。 2006,Karlsson等。 2012,Segtowich等。 2023,Cameron 2002]。2018,Mäkinen等。2006,Karlsson等。 2012,Segtowich等。 2023,Cameron 2002]。2006,Karlsson等。2012,Segtowich等。 2023,Cameron 2002]。2012,Segtowich等。2023,Cameron 2002]。许多林业实践都包含了通过优质稀疏或“选择性变薄”改善剩余树木质量分布的想法[Phillips 2024,Nuutinen等。但是,没有确定这样的过程的定义,概念“质量”也不明确定义。有些作者将质量变薄称为没有优先考虑大型或小树的过程,而是在各种尺寸的类别中保留质量高的树[Niemistö等。2018]。已经指出,选择性稀释剂可以提高对雪和风损伤的弹性[Cameron 2002,Cremer等。1982,Persson 1972,Valinger等。 1993]。 显然不知道1982,Persson 1972,Valinger等。1993]。 显然不知道1993]。显然不知道