虽然新颖的视图合成(NVS)在3D计算机视觉中取得了进步,但通常需要从密集的视点对摄像机内在和外部设备进行初始估计。这种预处理通常是通过结构 - 运动(SFM)管道来进行的,这是一种可以缓慢且不可靠的操作,尤其是在稀疏视图方案中,匹配的功能不足,无法进行准确的重建。In this work, we integrate the strengths of point-based representations (e.g., 3D Gaus- sian Splatting, 3D-GS) with end-to-end dense stereo mod- els (DUSt3R) to tackle the complex yet unresolved is- sues in NVS under unconstrained settings, which encom- passes pose-free and sparse view challenges.我们的框架工作,InstantsPlat,用3D-GS统一了密集的立体声先验,以构建稀疏场景的3D高斯大型场景 -
简单总结:脑电图为大脑活动提供了宝贵的见解,具有多种医疗用途,包括诊断、监测、药物发现和治疗评估。我们提出了一种人工智能模型,该模型经过独特优化,通过直接处理原始数据来分析脑电图信号。该模型通过空间通道注意和稀疏变压器编码等专用组件捕获脑电图中复杂的空间和时间模式。经过广泛评估,我们的模型在检测脑部疾病和分类精神药物方面表现出很高的准确性。通过自动学习原始脑电图数据的表示,它可以很好地适应疾病、受试者和任务。该模型的端到端学习能力和任务多功能性构成了一个强大且广泛适用的自动脑电图分析解决方案。我们相信它有潜力显著推进基于脑电图的诊断和个性化医疗。
人类表现出非常出色的技能,可以在不同形状,姿势和外观的对象中传递操纵能力,这是一种植根于他们对不同实例之间语义对应关系的理解的能力。为了为机器人提供类似的高级理解,我们提出了Sparsedff,这是一种新颖的DFF,用于3D场景,利用大型2D视觉模型从稀疏的RGBD图像中提取语义特征,该域与固定设置的许多任务相关,尽管它与许多任务相关。sparsedff生成视图一致的3D DFF s,通过将图像特征映射到3D点云,从而有效地对灵活性操作进行了有效的灵感操作学习。Sparsedff的中心是一个特征改进网络,通过视图和特征连续性的点式缩写机制之间的对比损失进行了优化。这有助于最小化特征差异W.R.T.最终效应参数,桥接演示和目标操作。在现实世界中用灵巧的手验证,Sparsedff证明有效地有效地操纵刚性和可变形的对象,表明对象和场景变化之间具有显着的概括能力。
摘要 - 选择在肿瘤研究中起着关键作用,可改善预测的预测准确性和对癌症患者的成本效益基因组分析。本文为基于深度学习的生存预测模型介绍了两种基因选择策略。第一个策略使用稀疏方法,而第二种方法则使用基于重要性的基因选择来识别相关基因。我们的整体方法利用了深度学习的力量来对复杂的生物数据结构进行建模,同时诱导稀疏方法确保选择过程侧重于最有用的基因,从而最大程度地减少噪声和冗余。通过对各种基因组和生存数据集的全面实验,我们证明了我们的策略不仅确定具有高预测能力生存结果的基因信号,而且还可以简化低成本基因组分析的过程。这项研究的含义非常深刻,因为它为推进个性化医学和靶向癌症疗法提供了可扩展有效的工具。通过突破基因选择方法的界限,我们的工作对癌症基因组学的持续努力做出了重大贡献,有望提高临床环境中的诊断和预后能力。索引术语 - 癌症,深度学习,基因组数据,稀疏性,生存
图3:(a)在2。CVO-QRAM算法从CIPSI迭代以及从基态截断(TGS)中得出的状态产生的状态。使用Qeb-和Qeb-和Qubit-pool近似于基态。(b)在相同目标的迭代上,重叠 - adapt-vqe ansatz的保真度。
抽象学习绩效数据(例如,测验得分和尝试)对于理解学习者的参与和知识掌握水平而言至关重要。但是,从智能辅导系统(ITS)收集的学习绩效数据通常会遭受稀疏性,从而影响了学习者建模和知识评估的准确性。为了解决这个问题,我们介绍了3DG框架(用于致密化和生成的3维张量),这是一种新型方法,将张量分解与先进的生成模型(包括生成对抗性网络(GAN)和生成性预训练的变压器(GPT))相结合,以增强数据插入和增强数据插入。该框架首先将数据表示为三维张量,从而捕获学习者,问题和尝试的维度。然后,它通过张量分解来致密数据,并使用生成AI模型增强数据,该模型是根据通过聚类识别的个体学习模式量身定制的。由成人扫盲中心(CSAL)中心的自动课程中的数据应用,3DG框架有效地生成了可扩展的,个性化的学习绩效模拟。比较分析揭示了GAN在这种情况下比GPT-4的出色可靠性,强调了其在解决ITS的数据稀少挑战方面的潜力,并有助于进步个性化的教育技术。
量子计算机的一个候选应用是模拟量子系统的低温特性。对于这项任务,有一种经过深入研究的量子算法,它对与低能态有不可忽略重叠的初始试验状态进行量子相位估计。然而,众所周知,很难从理论上保证这种试验状态能够有效地准备。此外,目前可用的启发式建议,例如绝热状态准备,在实际情况中似乎不够充分。本文表明,对于大多数随机稀疏汉密尔顿量,最大混合状态是一个足够好的试验状态,相位估计可以有效地准备能量任意接近基能的状态。此外,任何低能状态都必须具有不可忽略的量子电路复杂性,这表明低能状态在经典上是非平凡的,相位估计是准备此类状态的最佳方法(最多多项式因子)。这些陈述适用于两种随机汉密尔顿量模型:(i) 随机带符号泡利弦的总和和 (ii) 随机带符号 d -稀疏汉密尔顿量。主要技术论据基于非渐近随机矩阵理论中的一些新结果。特别是,需要对谱密度进行精细的集中界定,以获得这些随机汉密尔顿量的复杂性保证。
抽象学习绩效数据(例如,测验得分和尝试)对于理解学习者的参与和知识掌握水平而言至关重要。但是,从智能辅导系统(ITS)收集的学习绩效数据通常会遭受稀疏性,从而影响了学习者建模和知识评估的准确性。为了解决这个问题,我们介绍了3DG框架(用于致密化和生成的3维张量),这是一种新型方法,将张量分解与先进的生成模型(包括生成对抗性网络(GAN)和生成性预训练的变压器(GPT))相结合,以增强数据插入和增强数据插入。该框架首先将数据表示为三维张量,从而捕获学习者,问题和尝试的维度。然后,它通过张量分解来致密数据,并使用生成AI模型增强数据,该模型是根据通过聚类识别的个体学习模式量身定制的。由成人扫盲中心(CSAL)中心的自动课程中的数据应用,3DG框架有效地生成了可扩展的,个性化的学习绩效模拟。比较分析揭示了GAN在这种情况下比GPT-4的出色可靠性,强调了其在解决ITS的数据稀少挑战方面的潜力,并有助于进步个性化的教育技术。
神经网络在各个领域都取得了令人瞩目的成功,这引出了一个问题:最佳人工智能系统和人类智能的有效性背后隐藏着哪些基本原则。这种观点认为,组合稀疏性,即组合函数具有“少数”组成函数的特性,每个函数仅依赖于一小部分输入,是成功学习架构背后的关键原则。令人惊讶的是,所有高效图灵可计算的函数都具有组合稀疏表示。此外,同样稀疏的深度网络可以利用这一一般特性来避免“维数灾难”。这个框架对机器学习在数学中可能发挥的作用提出了有趣的启示。
∙第一作者:Minkyoung Kim,通讯作者:Minkyoung Kim *Minkyoung Kim(kmk0224@hanwha.com),Infra Technology R&D Systems,Hanwha Systems∙收到:2023。11。23,修订:2023。12。28,接受:2023。12。28。