摘要在这项研究中,提出了对低热稳定性临时粘合胶的优化对物理蒸气沉积(PVD)过程的优化。在各种底物上证明了Cu种子层在通过沟渠中的沉积:硅 - 硅粘合,硅玻璃键合和霉菌键合的底物。在处理过程中记录在这些底物上的表面温度远低于临时键合和去键(TBDB)材料的临界温度。本文重点介绍了PVD工艺的2.5D/3D集成电路(IC)包装中通过硅VIA(TSV)应用的创新。这些结果将在温度较低的范围明显较低的温度范围内稳健地整合具有低热稳定性的各种临时粘合粘合剂,其热稳定性低。引言临时键合和键合材料在实现薄和超薄晶圆底物的处理方面起着重要的中间作用。它为稀薄的Si Wafers提供结构和机械支撑,用于下游包装。这是因为在下游制造步骤期间,薄且超薄的基材具有高弯曲,折叠和有时断裂的趋势。因此,需要借助临时粘合粘合剂来支撑这些稀薄的底物在载体底物上[1]。这允许晶圆进行进一步的过程步骤,例如光刻,沉积等。设备晶圆通常与临时粘合涂层接触以进行支撑。在PVD过程中,金属靶标通过碰撞的热过程转化为原子颗粒。物理蒸气沉积(PVD)是TSV 2.5D/3D IC包装中铜的随后电化学沉积的关键过程步骤。这是一种以平滑表面,出色的机械性能以及对目标底物的良好粘附而闻名的先进材料处理技术。然后将这些颗粒定向到基板上,以在受控的真空环境中进行后续沉积,成核和生长。原子然后将其凝结成在底物上形成物理薄膜。这可以以两种方式进行:溅射和蒸发。在溅射过程中,将气态前体引入反应室,然后将其加速向目标加速,释放原子尺寸的颗粒以沉积到基板上。溅射技术的主要优点是由于加速
1. 加州理工学院喷气推进实验室 简介: Gregory Allen 是加州理工学院喷气推进实验室的高级辐射效应工程师。 过去 20 年,他一直从事辐射效应领域的工作,专注于单粒子效应和技术融合。 Greg 是喷气推进实验室空间辐射中心的联合负责人,也是辐射效应组的组长。 摘要: 2021 年 4 月 19 日,在火星的耶泽罗陨石坑,Ingenuity 旋翼机在另一颗星球上进行了首次动力飞行,标志着行星际探索的一个里程碑。 它被设计为 NASA 火星 2020 任务的技术演示器和次要有效载荷,主要目的是证明在极稀薄的火星大气中实现动力飞行是可能的。 它并非用于运输,而是为了测试在火星上进行空中探索的概念。然而,火星机智号的成功展示了在火星上进行空中探索的潜力,为未来使用直升机和无人机在其他星球上进行科学探索、测绘和侦察的任务铺平了道路。我们庆祝机智号的成功,探索它实现这一目标的途径,并展望火星自主飞行的未来。
摘要:光学非线性过程在广泛的应用中是必不可少的,包括超快激光器,显微镜和量子信息技术。在不同的非线性过程中,二阶效应通常不堪重负,除了中心对称系统,二阶易感性在其中消失了,从而允许使用第三阶非线性。在这里,我们演示了一个混合光子平台,可以灵活地调整二阶和三阶敏感性之间的平衡。通过用原子上稀薄的钨化装饰超高的二氧化硅微腔,我们观察到腔体增强的第二谐波产生和汇总频率产生,并以连续波激发的功率水平仅为几百微米。我们表明,可以通过仔细选择二维材料的大小和位置来实现单个设备中二阶和三阶非线性的共存。我们的方法可以推广到其他类型的腔体,从而释放具有对新应用的非线性敏感性的混合系统的潜力。关键字:二维材料,超高Q微腔,第二谐波一代,非线性光学元件,过渡金属二核苷
摘要 - 重要的技术进步使行星勘探飞机能够被视为可行的科学平台。这些系统填补了一个独特的行星科学测量差距,区域尺度的近距离观察,同时为行星发现提供了新的视角。使用UAV(无人驾驶飞机)对火星进行探索已有25年以上的领先航天组织(例如NASA)。最近的努力已经能够产生一些成熟的任务和飞行系统概念,准备实施飞行项目。然而,与让飞机飞过稀薄的二氧化碳富含火星氛围有关的挑战有很多。传统飞机设计专业知识并不总是适用于这种车辆,几何,空气动力和任务限制会导致可行的可行设计空间受到限制。本文提出了一种概念方法,该方法是为设计能够在火星大气中执行VTOL(垂直起飞和降落)的无人机。无人机旨在参加2021年国际行星航空系统挑战赛。无人机可以携带高达5公斤的科学有效载荷(火星重量)。
月球是研究深空等离子体和高能粒子环境的独特地点。在绕地球运行的大部分时间里,月球直接暴露在太阳风中。由于缺乏全球固有磁场和碰撞大气,太阳风和太阳高能粒子几乎不会发生任何偏转或吸收,直接撞击月球表面,与月球风化层和稀薄的月球外大气层相互作用。到达月球表面的高能粒子可能会被吸收或散射,或者通过溅射或解吸从月球风化层中移除另一个原子。银河宇宙射线也会出现同样的现象,其通量和能谱是行星际空间的典型特征。然而,在每次轨道运行的 5-6 天内,月球都会穿过地球磁层的尾部。这为现场研究地球磁尾等离子体环境以及大气从地球电离层逃逸提供了可能性,大气以重离子加速并流向尾部的形式存在。因此,月球环境为研究太阳风、宇宙射线和磁层与非磁化行星体的表面、地下和表面边界外层的相互作用提供了独特的机会。
摘要:平面光学元件旨在将光学系统的片上微型化,用于高速和低功率操作,并集成薄和轻量级的组件。在这里,我们介绍了通过使用各向异性二维(2D)纤维的三维(3D)地形重建实现的,但在光学上的各向同性纤维,以平衡平面外和平面内的光学响应。我们通过纳米组结构底物对单层过渡金属二甲化合物(TMD)纤维的共形生长来实现这一目标。与LM轴相比相比,所得的纤维显示了增强角度性能的平面外敏感性增加,以增强角性能,在效率吸收中显示偏振各向同性,以及改善的光致发光发射发射纤维。我们进一步表明,这种光学性质的3D几何编程适用于不同的TMD材料,在整个可见范围内对光谱概括进行了介绍。我们的方法提出了一个强大的平台,可通过定制设计的光 - 物质相互作用来推进原子上稀薄的光学器件的开发。关键字:原子上薄的材料,TMD,保形生长,3D地形,光同时发生
使用所谓的TIM(热界面材料)层,裸露的Si表面或Si与Au底部金属化(如Gan-On-Si芯片系统中)的组装(如Gan-On-Si芯片系统中)仍然具有挑战性。大多数TIM基于Ag-Sinter的层[1,2]。使用基于Ag的TIM代替基于SN的焊料具有许多优势,特别是:a)基于Ag的基于Ag的糊状(以上100 w m -1 K -1)的导热率明显优于焊料(范围40-60 Wm -1 K -1)和b)通常的较薄[1-3]。TIM的性质在很大程度上取决于微结构参数,例如存在空隙和TIM层厚度。通常,我们可以期望较薄的层是更好的热性能。然而,在最近的一项研究[4]中,作者表明,键线厚度应在20°M至50°M之间。从机械和热性能的角度来看,这种厚度范围都是最佳的。层稀薄的层小于20°M的特征是结构内的主应力和菌株较高,这可能会导致其粘合剂或凝聚力衰竭。对于厚度高于50℃的接头,其热电阻超过了可接受的极限。
1952年,两位天生才华横溢的物理学家,分别是亨利·卡普兰(Henry Kaplan)和埃德·金兹(Ed Ginzton)开始研究线性加速器的概念。在1997年,通过与强度调节辐射疗法结合使用,采取了进一步的步骤来推动线性加速器的使用[1]。结果是,从任何所需角度可以实现许多稀薄的辐射光束。线性加速器也被命名为线性粒子加速器,它可以加速加速带电颗粒(例如电子,质子或离子),使用一系列电场在直线上以高速为单位。与圆形加速器不同,该加速器使用磁场来弯曲颗粒的路径,Linac将颗粒保持在直路上的移动[2]。在放射治疗中,这种线性颗粒加速度用于药用目的,因为它会产生具有高能量的X射线和电子。因此,线性粒子加速器用于许多治疗应用。此外,它们在粒子物理学中也很有用,因为它们可以产生最高的动能,而线性加速器可以直接实现[3]。此外,线性加速器适用于粒子物理中的电子和质子,以获得高动能。有时称为LINAC的线性加速器是一种粒子加速器,具有增加带电的亚原子颗粒的能力,或者我们可以说,将带电的颗粒与线性光束线一起振荡的一系列电势。好吧,这种带电粒子加速的方法首先是由Leo Szilard [4,5]实验的。最新的放射治疗具有能力
相比之下,CPA的量子状态(稀薄的吸收剂都被量子光相干地照亮)缺乏这种解释的清晰度。CPA过程的结果在很大程度上取决于光的量子状态。例如,单个光子状态的总吸收和总传播状态之间的“经典”调制[10,11],而概率零或两光子吸收可能发生在两个光子状态[12-14] [12-14]。开发了量子光的CPA的理论模型[15-17]描述了量化行进波的问题,图。1(a),其中未考虑吸收剂的亚波长厚度。此外,根据所考虑的量子状态,需要进行骨气[15]或fermionic [13]第二量化形式主义。尽管缺乏对基本过程的清晰图片,但CPA的量子制度对于量子光学和量子信息的应用还是很大的兴趣。CPA为量子状态控制提供了一种强大的方法,包括量子状态过滤[16-18]和操纵量子光相关性[12-15,19]。最近,提出了量子光的分布式CPA的机理,以确定多节点量子网络中的纠缠确定性生成[20]。从基本的角度来看,CPA的量子状态提供了有关量子光吸收过程的新见解,包括局部[10,11,21]和非本地[22]光子吸收控制,概率两光子和确定性的一种光子吸收两个光子状态[12,13] [12,13]。该研究领域的进一步发展需要清楚地解释CPA的量子效应。
孕产妇甲状腺功能亢进与出生时先天异常的发生率增加有关,但是尚不清楚这些缺陷中的哪一个是由于持续过量的甲状腺激素过量发育而产生的,哪些依赖于妊娠期,哪些依赖于妊娠阶段,抗肌瘤药物的选择,或抗抑制性药物,或者是不愿意的。为了解决这个问题,我们研究了一个综合发育性甲状腺毒素的小鼠模型,该模型继发于缺乏3型去碘酶(DIO3)。dio3 - / - 小鼠在大多数遗传背景上表现出降低的新生儿生存力,而在C57BL/6背景上表现出围产期致死性。dio3 - / - 小鼠在新生儿期和软骨损失期间表现出严重的生长迟缓。出生后存活的小鼠表现出大脑和颅内畸形,严重的脑积水,choanal闭锁和口感。除了甲状腺毒性心脏,具有隔中间缺陷和稀薄的心室壁,这些异常在胎儿的C57BL/6J dio3 - / - 小鼠中很明显。我们的发现强调了DIO3在开发过程中的保护作用,并支持以下假设:妊娠期间与甲状腺功能亢进相关的人类先天性异常是由临床干预之前的短暂性甲状腺毒性引起的。我们的结果还表明,甲状腺激素参与特发性病理学的病因,包括left裂,Choanal闭锁,Chiari畸形,Kaschin-Beck病以及Temple以及其他颅骨脑膜炎和心脏综合征。