第一单元:生命的起源和进化 生物多样性的进化史,早期地球和生命的起源,自发,生物起源,巴斯德的实验,疾病的细菌理论;生命史上的重大事件,生命多样性的分类,生命王国——原核生物、真核生物、古细菌,达尔文的生命观和物种起源,达尔文的进化论。第二单元:微生物多样性 微生物的分类- R. H. Whittaker的五界概念,Carl Woese的域系统。细菌特殊群体的简要介绍-古细菌、支原体、衣原体、放线菌、立克次体和蓝藻。第三单元:生物分子 碳水化合物:命名和分类。脂质:储存和结构脂质的定义和主要类别。蛋白质:氨基酸的结构;蛋白质结构的层次。核酸:核苷酸的结构和功能;核酸的类型。单元 4:生物学的遗传方法 遗传模式和生物学问题;孟德尔定律的变化;遗传信息的分子基础;遗传信息从 DNA 到 RNA 再到蛋白质的流动。实践 1.学习 a) 显微镜的使用 b) 固定和染色的原理。2.制备正常、摩尔和标准溶液、磷酸盐缓冲液、连续稀释液 3.使用微量移液器 4.通过纸色谱法分离 A) 氨基酸 B) 叶绿体色素。5.对细菌进行革兰氏染色。6.从永久载玻片研究细胞/组织中核酸和粘多糖的细胞化学分布。7.使用 Lowry 法定量估计蛋白质。使用绘制的标准曲线确定未知样品的浓度。8.通过薄层色谱法分离和定量糖。9.培养大肠杆菌并用浊度法估计培养物密度。根据现有数据绘制生长曲线。10.从大肠杆菌中分离基因组 DNA。建议阅读 1.Campbell, N.A.和 Reece, J.B.(2008) 生物学第 8 版,Pearson Benjamin Cummings,旧金山。2.Raven, P.H 等人 (2006) 生物学第 7 版 Tata McGrawHill Publications,新德里 3.Griffiths, A.J.F 等人 (2008) 遗传分析简介,第 9 版,W.H.Freeman & Co. NY
大肠杆菌DNA污染单位测试了N/A N/A 200 200 200 200 200个规范> 99%27,400 U/mg <5.0%释放<1.0%<1.0%释放no conversion <10拷贝蛋白质的来源:大肠杆菌菌株,一种带有来自calf thymus的calf thymus的大肠杆菌菌株,该菌株具有N-Calf thymus,该基因具有N-Calf Thymus,该基因具有N-末端式纤维质质质质质量。单位定义:1个单位定义为在37°C下1小时内将1 nmol DTTPS转换为酸不溶性材料所需的聚合酶量。分子量:82.6 KDA质量控制分析:使用2倍连续稀释方法测量单位活动。在1X反应缓冲液中制成酶的稀释液,并将其添加到50 µL含有寡做DT 20 MER DNA,1X反应缓冲液,0.25 mM COCL 2 3 H-DTTP和100 µM DTTP的反应中。在37°C下孵育10分钟,浸入冰上,并使用Sambrook和Russell的方法进行分析(3)。蛋白浓度(OD 280)由OD 280吸光度确定。物理纯度,然后进行银色染色检测。通过比较浓缩样品中污染物带的聚集质量与稀释样品中蛋白蛋白蛋白带的质量来评估纯度。单链核酸酶在含有放射性标记的单链DNA底物的50 µL反应中确定,在37°C下孵育4小时4小时。双链外切核酸酶在50 µL反应中确定,该反应含有放射性标记的双链DNA底物和10 µL的酶溶液在37°C下孵育4小时。双链核酸内切酶在50 µL反应中确定,该反应含有0.5 µg质粒DNA和10 µL的酶溶液在37°C下孵育4小时。大肠杆菌16S rDNA的污染是使用5 µL重复的酶溶液的重复样品,并在Taqman QPCR测定中筛选,以使用与16S RRNA locus相应的寡核苷酸引物,以存在污染的大肠杆菌基因组DNA。
大豆酪蛋白消化培养基(胰蛋白胨大豆肉汤)预期用途大豆酪蛋白消化培养基是一种通用培养基,用于分离和培养多种苛刻和不苛刻的微生物。摘要大豆酪蛋白消化培养基 (SCDM) 广泛用于从环境来源培养微生物,支持多种微生物的生长,包括常见的需氧、兼性和厌氧细菌和真菌。它还用于制备用于菌落计数的生物稀释液和制备用于纸片扩散和稀释抗菌敏感性测试的标准接种物,如国家临床实验室标准委员会 (NCCLS) 所标准化。该培养基用于无菌测试,以检测低发生率真菌和需氧细菌的污染,并用于进行微生物限度测试。它用于大肠杆菌噬菌体检测程序,这是《水和废水检验标准方法》中的一种方法。大豆酪蛋白消化琼脂和培养基被收录在食品和化妆品检测的细菌分析手册以及牛奶、水和废水和食品检验方法纲要中。原理胰蛋白胨和大豆蛋白胨的组合使培养基营养丰富,为微生物的生长提供含氮、含碳物质、氨基酸和长链肽。葡萄糖作为碳水化合物来源,磷酸二钾缓冲培养基。氯化钠维持培养基的渗透平衡。配方*成分 g/L 胰蛋白胨 17.0 大豆蛋白胨 3.0 氯化钠 5.0 葡萄糖 2.5 磷酸二钾 2.5 最终 pH(25°C 时) 7.3 ± 0.2 *根据性能参数进行调整。储存和稳定性将脱水培养基储存在密闭容器中,温度低于 30ºC,将配制好的培养基储存在 2ºC-8ºC 下。避免冷冻和过热。请在标签上的有效期前使用。开封后保持粉末培养基密闭以避免水合。样本类型 水和废水样本;药物样本;食品和奶制品样本。样本采集和处理确保所有样本都贴有正确的标签。按照既定指导方针采用适当的样本处理技术。某些样本可能需要特殊处理,例如立即冷藏或避光,请遵循标准程序。样本必须在允许的时间内储存和测试。使用后,被污染的材料必须经过高压灭菌后才能丢弃。使用方法 1. 将 30.00 克粉末悬浮于 1000 毫升纯净水/蒸馏水中。 2. 充分混合。 3. 经常搅拌煮沸以完全溶解粉末。 4. 按照验证的周期在 121°C (15 psi) 下高压灭菌 15 分钟。
目的:在细胞毒性,自我更新,迁移,迁移和骨化分化方面,比较了常规纳米杂交(CERAM.X光谱)和基于Ormocer的牙科复合树脂对人牙髓干细胞(HDPSC)的影响。方法:在存在不同稀释液(未稀释的情况下,表格1:2至1:100)的Ceramx(CX)和Admira Fusion(AD)的培养HDPSC和在标准或成骨条件下的生存力测定。根据ISO 10993 - 12。此外,进行了凋亡,自我更新和迁移性评估。通过碱性磷酸酶活性,艾丽莎白红染色和特异性标记的基因表达(ALP,RUNX2,OCN,OPN,OPN和COL1α1)测试成骨分化潜力。 通过单向方差分析(单向方差分析)进行统计分析,然后进行Tukey的测试进行多重比较。结果表示为平均值±平均值(SEM)的标准误差。 结果:Admira Fusion证明是高度生物相容性的,并且对HDPSCS Pro的生动和分化显示了积极影响;相反,常规的纳米杂化复合材料显示出更大的细胞毒性,对干细胞分化没有任何显着影响。 此外,通过在基于Ormocer的复合树脂洗脱的存在下获得的成骨分化标记的明显上调,可以进一步证实所获得的结果。 此外,在同一组中,OPN和OCN与对照(OPN,p = 0.009; OCN,p = 0.0005)和CX 1:50相比产生的5倍(OPN,p = 0.012; ocn,ocn,p = 0.0006)。成骨分化潜力。通过单向方差分析(单向方差分析)进行统计分析,然后进行Tukey的测试进行多重比较。结果表示为平均值±平均值(SEM)的标准误差。结果:Admira Fusion证明是高度生物相容性的,并且对HDPSCS Pro的生动和分化显示了积极影响;相反,常规的纳米杂化复合材料显示出更大的细胞毒性,对干细胞分化没有任何显着影响。此外,通过在基于Ormocer的复合树脂洗脱的存在下获得的成骨分化标记的明显上调,可以进一步证实所获得的结果。此外,在同一组中,OPN和OCN与对照(OPN,p = 0.009; OCN,p = 0.0005)和CX 1:50相比产生的5倍(OPN,p = 0.012; ocn,ocn,p = 0.0006)。具体而言,在AD 1:50 ALP的组表达水平中,RUNX2,COL1α1比对照双重(ALP,P = 0.045; Runx2,P = 0.003;Col1α1,P = 0.001)和CX 1:50(ALP,P = 0.006; Runx2,P = 0.029; Col129;Col1α1,P = 0.029;Col1α1,P = 0.005)。显着性:与常规纳米杂交复合材料相比,AD获得的细胞毒性较小,这可能归因于口服环境中的单体释放减少,从而支持有限的不良反应和增强愈合潜力的假说,主要是当材料与浆液组织密切接触时。
医学微生物学简报。医学微生物学讲述ppt pdf。微生物学的原理是什么。微生物学在护理PDF中的重要性是什么。什么是微生物学PPT。微生物学讲述。ppt。医学微生物学是医学和微生物学的交集,重点是人类引起疾病的微生物。它探索了引起疾病的传染病,并解释了我们的身体如何抗击疾病。培养基的准备涉及:1。串行稀释2。倒板法3。传播板法4。条纹表征和识别方法包括:1。形态学2。微观3。生化4。抗生素敏感性测试类型的培养基类型为:1。复合物(例如马铃薯葡萄糖琼脂)2。定义(例如Czapek Dox媒介)3。选择性(例如,Endo Agar,Emb,Mac Conkey琼脂)的目的是获得微生物的纯菌落。串行稀释方法:接种物在正常盐水中经过连续稀释,然后扩散到琼脂板上。浇注板法:在各自的petriplates中,将接种物的连续稀释液添加到熔融琼脂中。各个殖民地被选用于子培养。扩散板法:将稀释的样品放在固化的琼脂上,并用无菌玻璃棒均匀地扩散。条纹板法:此方法涉及使用消毒环或转移针对琼脂板进行平行条纹。有两种类型的条纹:径向条纹和连续条纹。结果表明,初始生长是汇合的,密度降低了条纹,并在条纹结束时形成离散的菌落。文化特征,例如形态差异,用于将微生物分为分类群体。基于细菌细胞壁的差异,有两个主要类别:革兰氏阳性和革兰氏阴性细菌。所使用的主要污渍是晶体紫罗兰色,它是需要碘解决方案有效工作的媒体。次要污渍是safranin。革兰氏阳性细菌显得紫色,而革兰氏阴性细菌则为粉红色。一种阴性染色技术涉及使用印度墨水或黑糖苷等酸性染料,该染料不染色细菌,而是染色背景。这会导致在蓝色背景下透明(无色)细菌。IMVIC测试是一种用于识别细菌物种的方法。它由三个部分组成:吲哚,甲基红色和voges-proskauer测试。这些测试确定细菌是否发酵葡萄糖成某些化合物。柠檬酸盐利用测试确定细菌是否可以使用柠檬酸盐作为能源。所使用的介质是西蒙斯的柠檬酸琼脂,其结果是蓝色变化,表明对假单胞菌的阳性测试。过氧化氢酶测试测量细菌分解过氧化氢的能力。表明对葡萄球菌的阳性测试。抗生素敏感性测试决定了不同抗生素对各种微生物物种的有效性。这是使用琼脂扩散方法完成的,该方法涉及将抗生素放置在琼脂板上并观察每个磁盘周围的抑制区域。
目的:通过参考材料(RM)8366传递的值旨在将人类表皮生长因子基因(EGFR)和人类MET原始癌基因,受体酪氨酸激酶基因(MET)与未扩增的参考基因的比率进行协调。注意:有关可识别私人信息的“使用和隐私协议”,请参见第2页。eGFR基因扩增和相关的蛋白质表达增加并与许多人类恶性肿瘤的发病机理有关。在几种类型的癌症中,EGFR基因的扩增(增加)和蛋白质过表达被用作确定治疗治疗的生物标志物,并预测响应抗EGFR靶向治疗的临床结果[1]。MET基因扩增,导致蛋白质表达增加和MET受体的组成性激活。进行了各种临床试验,以评估癌症患者选择性MET抑制剂的安全性和功效。但是,对MET水平的准确评估仍然是一个挑战[2]。rm 8366由从六个人类癌细胞系中提取的基因组DNA组成,这些人类癌细胞系具有不同量的EGFR和MET基因。六个纯化的基因组DNA在缓冲液中,由10 mmol/L 2-Amino-2-(羟甲基)丙烷-1,3-二醇(TRIS)和0.1 mmol/L乙二胺二苯甲酸乙酸乙酸disodium disodium sal(EDTA)pH 8.0(TE -4)(TE -4)。描述:RM的一个单位由每个组件的一个小瓶组成,其中包含大约100μl的DNA溶液。六个成分是源自人类细胞系A-431,BT-20,C32,Daoy,HS 746T和SNU-5的基因组DNA材料,分别标记为A,B,C,C,D,E和F。在准备稀释液时,请考虑单个组件中的EGFR和MET放大的水平,以确保EGFR和MET拷贝数在您使用的测定的工作范围内。这些小瓶中的每一个都被标记,并用颜色编码的螺钉盖密封。未认证的值:未认证的值适合用于方法开发,方法协调和过程控制,但不为国际单位系统(SI)或其他高阶参考系统提供计量学可追溯性[3]。在表1和2中显示了95%可靠间隔和95%预测间隔的EGFR和MET副本比例的非认证值。附加信息:EGFR,MET和每个微层的基因副本的潜在兴趣值;附录A中提供了其他信息。有效期:未认证的值在指定的测量不确定性中有效,直到2027年12月31日。如果材料存储或使用不当,损坏,污染或其他修改,则值分配将无效。维护未认证的值:NIST将监视此材料的有效期结束。如果发生了实质性的技术变化,影响了此期间未认证的值,NIST将更新此参考材料信息表并通知注册用户。注册将有助于通知。RM用户可以从NIST SRM网站上可用的链接在线注册,也可以填写用RM提供的用户注册表格。在使用该材料交付的任何值之前,用户应验证其具有此文档的最新版本,可通过NIST SRM网站(https://www.nist.gov/srm)获得。
背景:Epetraborole(EBO)是含硼的口服叶木基-TRNA合成酶的口服抑制剂,这是蛋白质合成中必不可少的酶; EBO表现出对非结核分枝杆菌的有效活性。这些研究评估了EBO的口服剂量(PO)针对慢性小鼠感染模型中的5 M. Avium复合物(MAC)菌株作为单一疗法或与标准护理[SOC;克拉霉素(CLR),利法布丁(RFB),ethambutol(emb)]方法:针对Avium 2285R M. 2285r评估EBO的试验性慢性疗效研究,每天1、10、30、100、300和500 mg/kg PO每天(QD)(QD),而不是250 mg/kg/kg Clr PO QD。C57BL/6小鼠用1x10 11 CFU的肺气溶胶感染。从感染后第28天开始进行56天的治疗。在感染后第1、28和84天评估肺中的细菌负担(CFU),通过在Middlebrook 7H11木炭琼脂板上镀匀性稀释液。与MAC的SOC治疗(CLR 250 mg/kg,RFB 100 mg/kg,100 mg/kg),EBO剂量为100、200、300或400 mg/kg QD评估了4株Mac菌株。在一组未感染的小鼠中确定了EBO的口服暴露(表1)。 结果:在对Avium 2285R的一项研究中,生物膜形成菌株,EBO在所有剂量上测试的EBO明显好于以250 mg/kg剂量的CLR(图1),并且在含有EBO的琼脂平板上检测到NO NO CFU(16 mg/L)。 在随后的研究中,将SOC与其他4种MAC菌株中的EBO进行了比较(图2)。 结论:在这种慢性小鼠肺部感染模型中,在第84天未检测到Avium 2285R的EBO耐药性发展。在一组未感染的小鼠中确定了EBO的口服暴露(表1)。结果:在对Avium 2285R的一项研究中,生物膜形成菌株,EBO在所有剂量上测试的EBO明显好于以250 mg/kg剂量的CLR(图1),并且在含有EBO的琼脂平板上检测到NO NO CFU(16 mg/L)。在随后的研究中,将SOC与其他4种MAC菌株中的EBO进行了比较(图2)。结论:在这种慢性小鼠肺部感染模型中,在第84天未检测到Avium 2285R的EBO耐药性发展。EBO单一疗法的功效比SOC比对Avium ATCC 700898更好,而与M. Intacellulare 1956,M。el. ellacelulare DNA00055和M. el. ellacululare DNA00111相比,与2-4.8 log 10相比,它与M. Intarululare DNA00055和M. M. soc一样好。在测试的所有四种菌株中,200 mg/kg EBO近似于500 mg的人口腔等效剂量,与单独使用SOC相比,SOC的细菌杀死从1.4-3.0 log 10 CFU增加,从而导致总肺CFU降低总量为4.6-5.6 log 10。eBO与5种MAC菌株具有有效的体内功效,并在与SOC结合使用时会显着提高功效,从而支持EBO的进一步临床发育。