由 Emerald 出版。这是已获作者认可的手稿,其发行方式为:知识共享署名非商业许可证 (CC:BY:NC 4.0)。最终出版版本(记录版本)可在线获取,网址为 DOI:10.1108/AEAT-09-2021-0287。请参阅任何适用的出版商使用条款。
AAbstr bstract act.. 在过去十年中,机器学习越来越吸引多个科学领域的研究人员,特别是在增材制造领域。同时,这项技术对许多研究人员来说仍然是一种黑箱技术。事实上,它允许获得新的见解,以克服传统方法(例如有限元方法)的局限性,并考虑制造过程中发生的多物理复杂现象。这项工作提出了一项全面的研究,用于实施机器学习技术(人工神经网络),以预测 316L 不锈钢和碳化钨直接能量沉积过程中的热场演变。该框架由有限元热模型和神经网络组成。还研究了隐藏层数和每层节点数的影响。结果表明,基于 3 或 4 个隐藏层和整流线性单元作为激活函数的架构可以获得高保真度预测,准确率超过 99%。还强调了所选架构对模型准确性和 CPU 使用率的影响。所提出的框架可用于预测模拟多层沉积时的热场。
阅读时,我们的眼睛通过一系列注视和高速扫视浏览文本,以提取视觉信息。这一过程使大脑能够获得意义,例如关于书面文本中表达的情绪或情感价。大脑在自然阅读过程中如何提取单个单词的情感在很大程度上是未知的。这是由于自然成像的挑战,这导致研究人员之前采用高度控制、定时的逐字呈现缺乏生态效度的定制阅读材料。在这里,我们旨在评估自然阅读英语句子时词语情绪处理的电神经相关性。我们使用了一个公开的数据集,包括同步脑电图 (EEG)、眼动追踪记录和 400 个句子中的 7129 个单词的词级语义注释(苏黎世认知语言处理语料库;Hollenstein 等人,2018 年)。我们计算了注视相关电位 (FRP),即与注视开始时间锁定的诱发电反应。对从视觉和运动诱发活动中清除的 FRP 进行一般线性混合模型分析,结果显示,在注视开始后 224 – 304 毫秒间隔内,左中和右后电极簇中的积极和消极情绪条件之间存在地形差异。包括单词、短语和句子级情绪预测因子的额外分析显示,单词级情绪的 FRP 差异相同,但短语和句子级情绪没有额外的 FRP 差异。此外,从情绪匹配的 40 次试验平均 FRP 中对单词情绪(积极或消极)进行分类的解码分析显示平均准确率为 0.60(95% 置信区间:[0.58, 0.61])。控制分析排除了这些结果是基于眼球运动或语言特征的差异而不是词语情绪。我们的研究结果扩展了以前的研究,表明词汇语义刺激的情感价会在自然阅读过程中对单词注视产生快速的电神经反应。这些结果为在生态有效条件下识别词汇语义处理的神经过程提供了重要的一步,并可用于改进自然语言处理的计算机算法。
1.社交媒体策略 2.社交媒体内容营销 3.社交媒体的包容性和可访问性 4.建立社交媒体社区 5.衡量成功社交营销认证考试价值 199 美元
富营养化被认为是对全球河口和沿海生态系统健康的最大威胁之一。这是一种全球现象,对食物网,水质和水生化学反应有显着影响。富营养化是向河口和沿海地区供应生态系统生态能力的结果(Nixon,2009; Rabalais等,2009)。营养负荷也可能导致养分比的变化,这可能会在海洋生态系统中产生“不良干扰”。在这一目标中,至关重要的是,沿海地区可以实现良好的环境地位(GES)。引起沿海富营养化的驾驶员设置在多个人类诱发的压力源和富营养化的影响的较大框架内(例如生物多样性,生态系统降解,有害藻类绽放和底部水中的氧气表现出现的损失似乎受到与其他压力的协同作用的加剧,包括过度的压力,沿海沿海发育过度,沿海发育和气候驱动的升高,海水表面温度,海洋酸性和沿海沿岸排放。实际上,气候变化会影响养分的投入和行为,并可能加剧富营养化及其相关的负面影响(Statham,2012; Malone and Newton,2020; Rozemeijer等,2021)。富营养化对水生环境的健康的重要性及其与多种压力的联系导致汇编了当前的研究主题:“在富营养化过程中,气候变化与人为压力之间的局限性,第二卷”。然而,气候变化与富营养化之间的联系很复杂,主要与温度,风向模式,水文周期和海平面上升有关,导致淡水系统的淹没,地层的变化,流动时间和流动性时间和植物生产力,生产力,沿海风暴的活动,沿海风暴活动,物种和ecosys的变化(2012年)。
人工智能 (AI) 在医疗行业内患者护理和诊断流程的变革中发挥着越来越重要的作用。本文探讨了机器学习、自然语言处理和计算机视觉等 AI 技术对提高诊断准确性、简化患者护理和增强临床工作流程的变革性影响。通过分析最近的进展和案例研究,本文重点介绍了 AI 驱动的工具如何支持早期疾病检测、个性化治疗计划和患者数据的有效管理。它还探讨了与 AI 实施相关的潜在挑战和道德考虑,例如数据隐私和算法偏差。本文最后概述了 AI 在医疗保健领域的未来方向,强调需要继续研究、跨学科合作和监管框架,以最大限度地发挥 AI 的优势,同时解决潜在风险。通过这一探索,本文旨在全面了解 AI 在推进患者护理和诊断实践方面的作用,最终有助于建立更有效、更公平的医疗保健系统。
aabstr abtract Act ..在这项研究中,开发了一种数据驱动的深度学习模型,以快速准确预测温度演化和金属添加剂制造过程的熔融池尺寸。该研究的重点是通过直接能量沉积制造的M4高速钢材料粉末的批量实验。在非优化过程参数下,许多沉积层(以上30)通过由覆层材料对热史的高灵敏度引起的样品深度产生了巨大的微观结构变化。在先前的研究中通过实验测量验证的批量样本的2D有限元分析(FEA)能够实现定义在不同过程设置下温度场进化的数值数据。训练了馈送前向神经网络(FFNN)方法,以重现由FEA产生的温度场。因此,训练有素的FFNN用于预测初始数据集中未包含的新过程参数集的温度字段历史记录。除了输入能量,节点坐标和时间外,还认为五个相关的层数,激光位置以及从激光到采样点的距离可提高预测准确性。结果表明,FFNN可以很好地预测温度演化,在12秒内精度为99%。
人工智能 (AI) 正在改变企业处理招聘和聘用流程的方式。随着组织越来越多地转向使用 AI 来简化招聘流程,围绕其使用的道德考虑变得越来越重要。虽然 AI 可以提供减少偏见和提高效率等好处,但它也引发了对隐私、公平和问责制的担忧。本研究论文的目的是探讨在招聘过程中使用 AI 的道德考虑,并确定确保合乎道德的 AI 招聘实践的最佳实践。AI 是指开发可以执行通常需要人类智能的任务(例如决策和解决问题)的计算机系统。在招聘方面,AI 算法可用于扫描简历、进行就业前评估和分析视频面试以识别潜在候选人。AI 有可能通过识别高质量候选人并减少招聘所需的时间和资源来改善招聘结果。然而,在招聘中使用人工智能也引发了与隐私、公平和问责相关的道德问题。
摘要 免疫球蛋白 (Igs),也称为抗体,可协调宿主针对外来抗原(包括侵入性病原体)的获得性免疫反应。在鱼类中,IgM 主要存在于血液中,对体液系统免疫和保护宿主免受病原体侵害尤为重要。灭活疫苗是世界各地鱼类中广泛使用的一种主要疫苗,其效力与血清抗体水平直接相关;然而,鱼类血液中循环的全身性 IgM 出现的时间尚未确定。在本研究中,我们使用一种针对 IgM 开发的高灵敏度夹心酶联免疫吸附测定 (ELISA) 检查了日本琥珀鱼幼鱼血清 IgM 水平的动态变化。我们发现,幼鱼血清中的 IgM 浓度在孵化后 (dph) 长达 72 天 (平均值±平均值的标准误差 [SEM];体重:5.73±0.38 g,标准长度 [SL]:72.2±1.94 mm) 维持在较低水平,但从 79 dph 开始水平显著增加,在 85 dph (体重:14.05±0.92 g,SL:101.1±2.07 mm) 时达到平均值 84.76±9.23 μg/mL。这些结果表明,在幼鱼的早期生长阶段,由 IgM 介导的全身免疫仅部分成熟。目前的发现有助于制定针对幼鱼传染病的有效疫苗接种计划。