空中交通管制 (ATC) 是地面提供的一项服务,用于控制受控空域内所有飞机的移动。根据该区域雷达系统的可用性,可以使用雷达控制或程序控制来实现。在马来西亚半岛,这些受控区域被称为吉隆坡飞行信息区 (KLFIR)。这些区域分为 6 个区,分配给不同的管制员团队。由于本研究旨在研究空中交通管制员 (ATCO) 在程序管制期间使用的策略,因此选择吉隆坡海洋区或吉隆坡 4 区作为参与管制空域。为了收集有关管制员策略的见解,吉隆坡空中交通管制中心 (KLATCC) 的参与者自愿参加静态冲突检测演习 (SCDE)。根据结果,最突出的问题是延误,这在空中交通管理中是不可避免的。但是,研究还发现,通过在预计起飞时间 (ETD) 之前预先规划交通,可以实现请求巡航高度 (FPL) 和指定巡航高度 (XFL) 之间的一些最小差异。此外,据参与者报告,这样做可以使管制员的工作量平均减少 45%。由于可以使用多种控制策略,因此考虑航空公司的运营成本对于选择可能使管制员和航空公司都受益的最佳策略非常重要。此外,
A.完整的API促进对策略和配置的程序控制B. VXLAN对网络层抽象的支持C.动态地址组以动态调整安全性D. NVGRE对高级VLAN集成的支持。策略和配置 - 动态地址组以动态调整安全策略。帕洛阿尔托网络平台架构由四个关键要素组成:本质集成的安全技术,全套API,云交换服务和集中管理。全套API可以在平台上对策略和配置进行编程控制,从而可以与SDN控制器和编排工具进行自动化和集成。动态地址组是基于标准,区域,接口或用户定义的属性等标准表示IP地址组的对象。动态地址组允许安全策略动态适应网络拓扑或工作负载特征的更改,而无需手动更新。VXLAN对网络抽象的支持和NVGRE对高级VLAN集成的支持不是Palo Alto Networks平台体系结构的元素,而是支持SDN部署的功能。问题2哪些组件扫描允许流量中的威胁?
A.完整的API促进对策略和配置的程序控制B. VXLAN对网络层抽象的支持C.动态地址组以动态调整安全性D. NVGRE对高级VLAN集成的支持。策略和配置 - 动态地址组以动态调整安全策略。帕洛阿尔托网络平台架构由四个关键要素组成:本质集成的安全技术,全套API,云交换服务和集中管理。全套API可以在平台上对策略和配置进行编程控制,从而可以与SDN控制器和编排工具进行自动化和集成。动态地址组是基于标准,区域,接口或用户定义的属性等标准表示IP地址组的对象。动态地址组允许安全策略动态适应网络拓扑或工作负载特征的更改,而无需手动更新。VXLAN对网络抽象的支持和NVGRE对高级VLAN集成的支持不是Palo Alto Networks平台体系结构的元素,而是支持SDN部署的功能。问题2哪些组件扫描允许流量中的威胁?
READ 是一款用于农业的农药喷洒六旋翼无人机,可帮助农民在其土地上喷洒农药,从而减轻农民的工作负担。在这里,农民可以使用 Android 应用程序控制无人机,并且可以使用无人机接口的蓝牙模块连接到该应用程序。无人机通过遥测远程操作,操作员可以与飞机保持视觉接触,也可以使用 GPS 沿预编程路径自主操作。它将使用 GPS 精确地规划该农民土地的面积。在这里,我们使用了 ATmega2560 板,它是与蓝牙模块和 GPS 接口的开源电子原型平台。为了平衡方向和方位,我们使用了加速度计、陀螺仪和磁力计。当今世界,人们对绿色社会的渴望与日俱增,因此需要为飞机提供替代能源。目前还有许多其他替代能源,包括生物燃料和氢燃料电池,但与太阳能技术相比,没有什么是无限的。太阳能是无限的可再生能源之一,可用于增加无人机的续航能力,而不会增加大量重量。我们的无人机上安装了太阳能电池板,可作为补充电源延长无人机的飞行时间。随着续航能力的提高,我们的无人机覆盖的陆地面积也更大。READ 的实施考虑了低成本、可靠性、替代电源和自动控制。目标:
脑电图(EEG)是监测心理活动的常见方式之一。由于该系统的无创可用性,其适用性在医疗用例以外的出色发展。这样的用例是脑部计算机界面(BCI)。这样的系统需要使用高分辨率的多通道脑电图设备,以便数据收集跨越大脑的多个位置,例如枕骨,额叶,时间等。This results in huge data (with high sampling rates) and with multiple EEG channels with inherent artifacts.例如,在分析这种性质的数据中存在几个挑战,例如,选择最佳数量的脑电图渠道或决定依靠哪些最佳功能来实现更好的性能。选择这些变量很复杂,需要大量的领域知识和无创的脑电图监测,这总是不可行的。因此,优化是一种易于访问的工具。已经提出了将这些问题作为优化问题提出的巨大努力。结果,在BCI中已经开发了各种多目标和约束优化功能,这些功能已在设备控制中实现了可靠的结果,例如神经螺旋臂,应用程序控制,游戏,游戏等。本文试图研究在制定BCI问题的优化技术的用法。详细讨论了这些方法的结果,挑战和主要观察结果。
职责与责任:操作 C2 战斗管理系统设备。作为作战单位的机组人员,解释雷达数据显示以生成控制台显示。根据飞行数据或数据库文件比较和报告轨道位置。执行监视、识别、武器控制、战术数据链路和数据管理功能。进行任务规划。负责所控制空中作战的战斗管理和飞行安全。拆卸、装载、运输、卸载和安装设备和部件。执行 EP 功能。使用 EP 技术保持最大雷达灵敏度,以消除电子战 (EW) 活动或其他影响造成的性能下降。监控雷达输入和对抗控制台、抗干扰显示器和雷达传感器的运行,以增强雷达显示。操作战区战斗管理控制系统。执行日常空中、太空和信息作战任务;提供快速反应、积极控制、协调和消除武器使用冲突以及整合总体作战力量。协调搜救和人员恢复行动。发布空域控制程序并协调空域控制活动。提供防空的总体指导,包括战区和弹道导弹防御。制作和传播空中任务命令、空域控制命令、特殊指令 (SPINS)、作战任务数据链 (OPTASK LINK)、战术作战数据 (TACOPDAT) 和通用作战和战术图像指导以及任何相关变更。维护日志、表格和数据库文件。操作防空作战控制中心设备。收集、显示、记录和分发作战信息。就与飞机作战有关的事项,与防空、空中管制、靶场管制和空中交通管制机构协调并交换空中运动和识别信息。规划数据链操作。操作数据链设备和其他自动数据交换设备,收集和传递指挥和控制态势显示信息,以创建单一的综合空中图像。报告紧急信号和电子攻击观察结果。维护日志、表格和数据库文件。评估雷达探测和性能。与防空炮兵和水面海军火力部队保持联络,确保友军空中交通安全通行。根据指示执行空中任务命令 (ATO),通过协调和整合空中、太空和网络力量来支持空中部队的行动,从而实现地面指挥官的目标。为在火力支援协调线 (FSCL) 内的 AO 内运行的 CAS 飞机提供程序控制。根据需要为其他空中部队飞机提供程序控制。建立、维护和操作执行任务所需的自主前向和后向通信架构/基础设施,包括空军空中请求网和联合空中请求网。提供分散的即时空中支援。协调在控制区域内飞行的空中任务,以避免与地面部队的机动和火力发生冲突,并接收目标和威胁更新。协助进行时间敏感的目标定位和友军位置信息。利用搜索和救援卫星辅助跟踪信息和空军救援协调中心计算机系统。进行民间搜索和救援。与各种国家和国际机构协调。监控并充当正在进行的搜索和救援任务的通信联络点。执行培训、规划、标准化和评估以及其他工作人员职责。执行对下属单位的工作人员协助访问。测试和评估新设备的能力和新程序的适当性。
在远程治疗中,也称为外部束放射治疗,辐射剂量从远处传送到患者的患处。对于辐射源,有两种选择:要么使用 x 射线管等设备在需要时生成辐射,要么使用某些持续发射辐射的放射性同位素。Bhabhatron 是一种自主开发的远程治疗机,使用钴-60 放射性同位素发射的高能伽马射线治疗局部癌症[1]。它有 10 个电动和远程操作动作,可准确定位患者并塑造辐射场。一个包含活性高达 15kCi 的钴-60 放射性同位素的源胶囊可远程控制,以在屏蔽位置和治疗位置之间切换。由于受癌症影响的器官/区域的几何形状非常不规则,因此开发了一种多叶准直器 (MLC) 系统并将其与 Bhabhatron 集成。由钨合金制成的薄发散叶片分为两组(每组 30 个),并由单独的电动机独立驱动。计算机程序控制叶片并独立定位每个叶片,以产生符合不规则肿瘤边界的所需辐射场几何形状。基于加速器的进口远距离治疗机与此类似,只是辐射源被发射高能 x 射线的紧凑型线性加速器所取代。
数字 I/O 计数器 - FP4020 型号最多可将 08 个数字输入集成到装置中。数字输入为高阻抗 24 VDC。该装置还可具有最多 08 个数字输出。输出可以是继电器 (NO) 或晶体管输出 (NPN/PNP)。程序控制 - 子程序 CALL 子程序 RET 功能键下一个主控制设置主控制重置 FP4020 有 06 个带内置 LED 的功能键。这些功能键是屏幕跳转控制设置跳转控制重置 En Intr 相关功能键。用户可以将任何与应用程序相关的任务/操作分配给这些功能键。功能键独立于数字键盘。用户还可以将任务分配给数字键,并在需要时将它们用作功能键。功能 - 报警移动平均数数字滤波器 PID1,4 ® 可以在 FlexiPanels 中定义实时和历史报警。用户友好 报警 上限 下限 函数发生器对象可以在显示屏上定义。报警可以是实时的,也可以是历史的。可以分配按键来确认报警、查看和滚动。 特殊 - 配方 设备设置 设备重置 寄存器设置 ® 配方数据存储在 FlexiPanels 内存中。只需按一下按钮,就可以将一组数据下载到 PLC。一旦进入本地内存,就可以使用简单的数据输入对象编辑配方数据。 直接 I/O 设置 日历 日历操作
在大多数联合或合成作战中,空中和防空控制将是作战层面的首要任务。先进的武器使防空系统能够在更远的距离上打击空中威胁,从而增加了意外打击友军飞机或同时使用多个系统打击威胁的可能性。近期的几次绿旗演习(GF 88-3 和 89-41)表明,在友军战斗机所在的同一空域使用地面防空系统会增加自相残杀和地面系统的导弹支出。作为联合防空作战 (JADO) 的一种替代方案,JEZ 概念可以使用基于非合作目标识别 (NCTR) 的新兴识别技术来提高防空效能,同时降低友军飞机自相残杀的可能性。本研究分析了联合交战区概念,以确定其对作战级防空的影响。JEZ 概念通过减少程序控制并通过积极敌方识别 (PHID) 交战规则最大限度地实现积极控制,从而提供了更大的灵活性。本研究首先通过研究自飞机进入战场以来对防空的需求而发展起来的理论和使用概念来回顾防空基础知识。然后分析两个战役,以验证评估防空效力的标准。对服务和联合条令的审视完成了对基础知识的审查。本研究最后讨论并分析了联合交战区概念对美国作战的可能效果。本研究得出结论,JEZ 概念在战争的作战层面上是有效的,未来美国军队在规划和开展战区战役时应准备使用联合交战区。
Change Log 6 Introduction and supported models 9 Supported models 9 Special notices 10 IPsec phase 1 interface type cannot be changed after it is configured 10 IP pools and VIPs are not considered local addresses for certain FortiOS versions 10 Support for FortiGates with NP7 processors and hyperscale firewall features 10 Changes in CLI 11 Changes in GUI behavior 13 Changes in default behavior 14 Changes in default values 15 Changes in table size 16 New features or enhancements 17 Upgrade information 30 Fortinet Security Fabric upgrade 30 Downgrading to previous firmware versions 31 Firmware image checksums 32 Strong cryptographic cipher requirements for FortiAP 32 FortiGate VM VDOM licenses 32 VDOM link and policy configuration is lost after upgrading if VDOM and VDOM link have the same name 32 GUI firmware upgrade does not respect upgrade path 33 Product integration and support 34 Virtualization environments 35 Language support 35 SSL VPN支持36 SSL VPN Web模式36解决问题37反垃圾邮件37抗病毒37应用程序控制37数据泄漏预防38端点控制38显式代理38 FIREWALL 38 FORTIVIEW 40 GUI 40 HA 42 HYPERSCALE 42 HYPERSCALE 43 ICAP 44 ICAP 44