结果:所提方法表现出更好的泛化性能,可以获得对所有结构的稳定准确率,而最新的深度学习方法对于某些结构的准确率极低。所提方法对所有样本都进行了分割,准确率明显高于传统方法,例如 3D U-Net、FreeSurfer 和脑功能性磁共振成像 (FMRIB) 软件库中的集成配准和分割工具 (FSL-FIRST)。此外,当将所提方法应用于较大的数据集时,可以对所有样本进行稳健的分割,而不会在明显不同于解剖相关区域的区域产生分割结果。另一方面,FSL-FIRST 对大约三分之一到四分之一的数据集在明显不同于解剖相关区域的区域产生了分割结果。
完整的作者列表:林,Yuhan;深圳理工学院张,江;深圳理工学院,霍夫曼高级材料学院,博士后创新实践基地潘迪,哈迪克;威克森林大学,物理邓,Xinglong;阿卜杜拉国王科学技术大学,高级膜和多孔材料中心,化学与生命科学与工程锣部,Qihan; hao的石油化学研究所王;深圳理工学院,霍夫曼高级材料学院,梁;南中国技术大学,化学与化学工程学院康(Kang);深圳理工学院YU,WEI;深圳理工大学黄色,小子;深圳理工学院,霍夫曼高级材料学院Thonhauser,Timo; Wake Forest University,YU物理学系;阿卜杜拉国王科学技术大学,高级膜和多孔材料中心,化学与生命科学与工程部Li,Jing;罗格(Rutg)新泽西州立大学,化学与化学生物学
正如金融服务业一样,经济的超数字化为金融监管机构带来了机遇和潜在危险。从好的方面来看,监管机构可以获取大量信息,这些信息中充满了有关金融系统风险的信号,监管机构需要花费大量时间才能了解这些风险。数据的爆炸式增长揭示了全球货币流动、经济趋势、客户入职决策、贷款承销质量、不遵守法规、金融机构为服务不足的群体所做的努力等等。重要的是,它还包含了监管机构关于新技术本身风险的问题的答案。金融数字化产生了新型风险并加速了它们的发展。问题可能在定期的监管检查之间爆发,也可能在传统报告中反映的信息表面下不知不觉地积累起来。得益于数字化,监管机构今天有机会收集和分析更多数据,并几乎实时地查看其中的大部分数据。
从持续的地缘政治动荡对大宗商品市场的影响,到全球可再生能源部署面临的当前挑战,2024 年对于能源行业来说将是喜忧参半的一年。但即使进展速度开始稳定下来,我们仍指出了能源转型道路上的一些积极发展和希望。
摘要。目前,制造可靠的无人机(无人机)是科学和技术的一项重要任务,因为此类设备在数字经济和现代生活中有很多用例,所以我们需要确保它们的可靠性。在本文中,我们建议用低成本组件组装四轴飞行器以获得硬件原型,并使用现有的开源软件解决方案开发具有高可靠性要求的飞行控制器软件解决方案,该解决方案将满足航空电子软件标准。我们将结果用作教学课程“操作系统组件”和“软件验证”的模型。在研究中,我们分析了四轴飞行器及其飞行控制器的结构,并提出了一种自组装解决方案。我们将 Ardupilot 描述为无人机的开源软件、适当的 APM 控制器和 PID 控制方法。当今航空电子飞行控制器可靠软件的标准是实时分区操作系统,该系统能够以预期的速度响应来自设备的事件,并在隔离分区之间共享处理器时间和内存。此类操作系统的一个很好的例子是开源 POK(分区操作内核)。在其存储库中,它包含一个四轴飞行器系统的示例设计,使用 AADL 语言对其硬件和软件进行建模。我们将这种技术与模型驱动工程应用于在真实硬件上运行的演示系统,该系统包含一个以 PID 控制作为分区过程的飞行管理过程。使用分区操作系统将飞行系统软件的可靠性提升到了一个新的水平。为了提高控制逻辑的正确性,我们建议使用形式验证方法。我们还提供了使用演绎方法在代码级别以及使用微分动态逻辑在信息物理系统级别验证属性的示例,以证明稳定性。
厘米级、稳健的 GNSS 辅助惯性后处理,用于无本地参考站的移动测绘 J. J. Hutton a、N. Gopaul a、X. Zhang a、J. Wang a、V. Menon a、D. Rieck b、A. Kipka b、F. Pastor b a Trimble Navigation Limited,85 Leek Cr.,Richmond Hill,Ontario,Canada L4B 3B3 – (jhutton、ngopaul、xzhang、jhwang、vmenon)@applanix.com b Trimble Navigation Limited,Haringstrasse 19,Hohenkirchen-Siegertsbrunn Munich,85635,德国 – (Daniel_Rieck、Adrian_Kipka、Fabian_Pastor)@trimble.com ICWG III/I 关键词:差分GNSS、传感器方向、移动测绘、GNSS 辅助惯性、地理配准、机载测绘、直接地理配准、PPP 摘要:近二十年来,移动测绘系统一直使用全球导航卫星系统 (GNSS) 进行地理配准,以测量位置并使用惯性传感器测量方向。为了实现厘米级的位置精度,使用了一种称为后处理载波相位差分 GNSS (DGNSS) 的技术。为了使此技术有效,到单个参考站的最大距离不应超过 20 公里,而当使用参考站网络时,到最近站的距离不应超过约 70 公里。这种设置本地参考站的需求限制了生产力并增加了成本,尤其是在测绘大面积或长线性特征(例如道路或管道)时。用于从 GNSS 进行高精度定位的 DGNSS 替代技术是
摘要 首次展示了通过剥离技术在 SiO 2 / Si 衬底上制备的纳米膜三栅极 β -氧化镓 ( β -Ga 2 O 3 ) 场效应晶体管 ( FET )。通过采用电子束光刻技术,可以定义最小尺寸特征,覆盖通道宽度为 50 纳米。为了在 β -Ga 2 O 3 和栅极电介质之间获得高质量的界面,利用原子层沉积的 15 纳米厚的氧化铝 ( Al 2 O 3 ) 和三甲基铝 ( TMA ) 自清洁表面处理。制备的器件表现出极低的亚阈值斜率 ( SS ),为 61 mV dec − 1 ,高的漏极电流 ( I DS ) 开/关比为 1.5 × 10 9 ,以及可忽略不计的传输特性滞后。我们还通过实验证明了这些器件的稳健性,在高达 400°C 的温度下测量了电流-电压(I-V)特性。
使用在实验室环境之外记录的 EEG 构建机器学习模型需要对噪声数据和随机缺失通道具有鲁棒性的方法。在处理稀疏 EEG 蒙太奇(1-6 个通道)时,这种需求尤其大,稀疏 EEG 蒙太奇经常出现在消费级或移动 EEG 设备中。经典机器学习模型和在 EEG 上端到端训练的深度神经网络通常都没有设计或测试对损坏的鲁棒性,尤其是对随机缺失通道的鲁棒性。虽然一些研究提出了使用缺失通道数据的策略,但当使用稀疏蒙太奇且计算能力有限(例如可穿戴设备、手机)时,这些方法并不实用。为了解决这个问题,我们提出了动态空间滤波(DSF),这是一个多头注意力模块,可以插入神经网络的第一层之前,通过学习关注好通道并忽略坏通道来处理缺失的 EEG 通道。我们在包含约 4,000 条模拟通道损坏记录的公共 EEG 数据和包含约 100 条自然损坏移动 EEG 家庭记录的私人数据集上测试了 DSF。当没有施加噪声时,我们提出的方法可实现与基线模型相同的性能,但当存在严重通道损坏时,其准确率比基线高出 29.4%。此外,DSF 输出是可解释的,因此可以实时监控有效通道重要性。这种方法有可能在通道损坏妨碍读取脑信号的具有挑战性的环境中实现 EEG 分析。
使用在实验室环境之外记录的 EEG 构建机器学习模型需要对噪声数据和随机缺失通道具有鲁棒性的方法。在处理稀疏 EEG 蒙太奇(1-6 个通道)时,这种需求尤其大,这种蒙太奇经常出现在消费级或移动 EEG 设备中。经典机器学习模型和在 EEG 上端到端训练的深度神经网络通常都没有设计或测试过对损坏的鲁棒性,尤其是对随机缺失通道的鲁棒性。虽然一些研究提出了使用缺失通道数据的策略,但当使用稀疏蒙太奇且计算能力有限(例如可穿戴设备、手机)时,这些方法并不实用。为了解决这个问题,我们提出了动态空间滤波(DSF),这是一个多头注意力模块,可以插入神经网络的第一层之前,通过学习关注好通道并忽略坏通道来处理缺失的 EEG 通道。我们在包含约 4000 条模拟通道损坏记录的公共 EEG 数据和包含约 100 条自然损坏移动 EEG 家庭记录的私人数据集上测试了 DSF。当不施加噪声时,我们提出的方法可实现与基线模型相同的性能,但当存在严重通道损坏时,其准确度比基线高出 29.4%。此外,DSF 输出是可解释的,因此可以实时监控有效通道重要性。这种方法有可能在通道损坏妨碍读取脑信号的具有挑战性的环境中实现 EEG 分析。