无定形硅及其合金,由于其物质及其生产性,在近年来引起了迅速增长的兴趣。非晶技术比晶体技术的主要优势大大降低了成本,以至于某些消费者应用,例如太阳能电池,薄纤维晶体管等。太阳能电池在电信中涉及远离电网的基站电力电力。然而,基于A-SI的设备的表现受光,高能量颗粒,载体注入,载体在A-SI相互之间的堆积和热淬灭[1]引起的可逆,亚稳态变化的限制[1]。所有这些效应都是通过退火到高度高温而可逆的,并且所有这些效应都被相同的降解机制引起[2]。由于在A-Si:H中发现了亚稳态效应,因此有强有力的间接证据表明氢和掺杂剂的作用仍然缺乏完全的证明。证据主要源于在与亚竞争效应相同的温度下观察到的氢运动。缺陷退火的活化能与氢二氮的活化能相当。此外,掺杂趋势是相同的 - 掺杂剂会导致较大的水力差异系数也导致了更快的缺陷弛豫。另一方面,氢通过削减由粘结障碍引起的大量悬挂键缺损而使掺杂成为可能。亚稳态变化的种类和大小取决于氢和掺杂剂这种磷或硼。这些效果取决于在掺杂的氢化无定形硅中,存在两个不同现象的共膜质:悬挂键密度的可逆增加和掺杂效应的可逆增加。
市政水务业务以长期特许经营(在欧洲,主要是法国、西班牙、捷克共和国)、全资拥有或永久特许经营的方式运营,有助于增强威立雅的业务风险状况,因为它们占水务业务的最大份额(占 2022 年 EBITDA 总额的 36% 或 29 亿欧元)。这些活动受益于强大的现金流可见性,这要归功于支持性的监管框架(美国、智利)或强大的通胀保护功能(自动指数化),涵盖已发生的成本和资本支出(资本支出)。剩余的容量风险被这样一个事实所平衡:分配的水量大多不受宏观经济趋势的影响。事实上,人口增长、水资源短缺动态、水质和新的污染处理都支持了水量。
我们认为,人工智能开发是对现有内容的一种可接受的、变革性的、对社会有益的使用,受到合理使用的保护,并有助于实现版权法的目标,包括“促进科学和实用艺术的进步”。4 人工智能模型具有创造性、分析性和科学性应用,远远超出了“按一下按钮,获取一张图片”或“按一下按钮,获取一首诗”的范围。这些模型将改变基本服务的提供方式,从医疗建议到个性化辅导;推动科学研究的突破;彻底改变我们在线搜索和获取信息的方式;并支持一些最重要的公共和私人机构的知识管理、分析或决策。此外,我们认为现行法律为防止侵权使用人工智能工具提供了足够的保障,尽管我们已敦促政策制定者在必要时加强对不当使用身体或声音肖像的规则。
抽象有机物在土壤中的积累被理解为矿物相关(分解,微生物衍生的)有机物与自由颗粒(较少分解的植物衍生)有机物之间的动态。然而,从区域到全球尺度,主要土壤有机碳(SOC)部分的模式和驱动因素尚不清楚,并且与土壤类型之间的子宫遗传学变异保持不佳。在这里,我们将与淤泥和粘土大小的颗粒(S + C),稳定的聚集体(>63μm,SA)和颗粒有机物(POM)相关的SOC与沿着地理气候梯度采样的各种草地表土与颗粒有机物(POM)分开。两种矿物相关的部分(S + C&SA)对SOC的相对贡献在整个梯度中差异很大,而POM从来都不是主要的SOC分数。稳定的骨料(>63μm)在富含碳 - 富含碳的土壤中成为主要的SOC分数。稳定聚集体中碳的分解程度(>63μm)始终在S + C和POM级分之间,并且没有沿研究梯度变化。相比之下,与S + C分数相关的碳在富含碳 - 贫民土壤中的微生物分解较少。S + C部分中SOC的量与Pedogenic氧化物的含量和质地呈正相关,而与稳定聚集体(>63μM)相关的SOC量与Pedogenic氧化物含量呈正相关,并与温度负相关。我们提出了我们发现的概念摘要,该概念将稳定骨料(>63μm)与其他主要SOC馏分的作用整合在一起,并说明了它们在(土壤)环境梯度之间的重要性变化。
在本文中,我们提出了RSTAB,这是视频稳定框架的新型框架,该框架通过音量渲染整合了3D多帧融合。与传统方法背道而驰,我们引入了一个3D多框架透视图,以进行稳定的图像,从而解决了全框架生成的挑战,同时保存结构。我们的RSTAB框架的核心在于S Tabilized R Endering(SR),该卷渲染模块,在3D空间中融合了多帧信息。具体来说,SR涉及通过投影从多个帧中旋转的特征和颜色,将它们融合到描述符中以呈现稳定的图像。然而,扭曲的信息的精度取决于降低的准确性,这是受染色体区域显着影响的因素。为了响应,我们介绍了a daptive r ay r ange(arr)模块以整合深度先验,并自适应地定义了投影过程的采样范围。在方面上,我们提出了以光流的光流限制的限制,以进行精确的颜色,以实现精确的颜色。多亏了这三个模块,我们的rstab示例表现出了卓越的性能,与以前的视野(FOV),图像质量和视频稳定性相比,各种数据集的稳定器相比。
纳米颗粒在接口处。没有纳米颗粒,系统将在系统中发生宏观分离,这两个阶段将根据其密度而定。[5,6] 2000年代初期证明了Bijels生产的第一个程序。第一个实验成功的方法是所谓的热旋缺失分解。[7]在2015年,Haase和同事改善了这种方法,开发了一种导致旋律分解的方法,该方法依赖于从三元混合物中去除溶剂的方法。[8]在这种情况下,将两个易碎的液体与溶剂混合在一起,该溶剂具有使它们相互溶于的能力。将所谓的混合物注入能够提取溶剂的连续相中,其突然去除会诱导两个剩余流体的旋律分解。最近,Clegg Research Group定义了一种越来越简单,更快的生产协议,涉及所涉及的组件之间的直接混合。[9]以这种策略分散到两种不混溶的液体中,需要一些表面活性剂。以这种方式,可以偏爱面部表面的不同局部曲率并稳定结构。与旋律分解不同,这里的比杰尔是通过应用高剪切速率形成的,因此,在初始阶段,产生了二元混合物的液滴。去除剪切物后,粗糙的过程开始将颗粒[1]在接口处捕获[1],直到融合融合为止。最近的Huang等人。同时,表面活性剂施加了液态液接触表面的局部曲率,有助于形成特征性的双连续结构。[1,2,10]仅使用简单的涡流混合简化了生产方法。这样做,他们采用了不同的分子量表面活性剂的组合来稳定不同的局部曲率,以与两个液相之间的界面稳定。在这种情况下,形成比耶尔的唯一必要条件是使用具有不同分子量的聚合物的混合物和足够高的颗粒来形成双连续性的互面膜间堵塞的乳胶凝胶。在最近几年中,比杰尔(Bijels)在许多工业领域表现出了有希望的应用,例如电池,燃料电池和许多其他领域,其中具有控制结构的多相材料引起了任何关注。[11]从医学角度来看,使用Bijels的主要优势居住在可能获得系统
鉴于化学行业对绿色和可持续技术的需求不断增长,他们的原子有效和选择性氧化反应代表了一个关键的挑战。 [1-5]一氧化二氮,N 2 O,在解决此问题中起着重要的作用。 虽然它是一种良好的特种化学物质,主要以其用作麻醉而闻名,但在1980年代,它已开始引起作为选择性氧化剂的大幅关注。 由于其捐赠单个氧原子的能力,它避免了过度氧化的风险,并且尤其是在生态上良性n 2作为唯一的副产品,将其作为许多常规氧化剂的绿色替代品。 [6-8]在接下来的几年中,N 2 O已被证明可以解锁苯对苯酚或甲烷至甲醇的一步氧化的独特途径。 [9,10]前者的高度选择性和便利性,导致了1990年代后期的Alphox过程。 在其中,Boreskov Institute鉴于化学行业对绿色和可持续技术的需求不断增长,他们的原子有效和选择性氧化反应代表了一个关键的挑战。[1-5]一氧化二氮,N 2 O,在解决此问题中起着重要的作用。虽然它是一种良好的特种化学物质,主要以其用作麻醉而闻名,但在1980年代,它已开始引起作为选择性氧化剂的大幅关注。由于其捐赠单个氧原子的能力,它避免了过度氧化的风险,并且尤其是在生态上良性n 2作为唯一的副产品,将其作为许多常规氧化剂的绿色替代品。[6-8]在接下来的几年中,N 2 O已被证明可以解锁苯对苯酚或甲烷至甲醇的一步氧化的独特途径。[9,10]前者的高度选择性和便利性,导致了1990年代后期的Alphox过程。在其中,Boreskov Institute在其中,Boreskov Institute
4 ramasamy.s@hit.edu.in , 5 md.devendran@gmail.com 摘要:农业在许多国家的经济稳定中发挥着至关重要的作用,优化作物选择对于提高农业生产力和可持续性至关重要。“使用机器学习方法的作物推荐系统”旨在利用机器学习技术根据各种环境和土壤条件提供精确的作物推荐。通过结合土壤成分、pH 值、温度、湿度、降雨量和地理位置等因素,该系统为特定区域推荐最合适的作物。该系统利用机器学习模型,特别是随机森林和决策树,来分析历史农业数据,预测最佳作物,并改善农民的决策过程。通过在大型数据集上训练模型,它可以确保与现实世界的农业实践相一致的准确预测。该系统的应用可以提高作物产量、可持续的农业实践,并降低与不良作物选择相关的风险。通过使用标准分类指标进行严格评估,该模型的性能证明了其通过帮助农民做出明智的决策来彻底改变农业实践的潜力。该系统有可能成为农业顾问、农民和政策制定者的宝贵工具,确保长期可持续性和生产力的提高。
