本文提出了针对非BOLONOMIC车辆的稳定跟踪控制规则。通过使用Liapunov函数来证明该规则的稳定性。对车辆的输入是参考姿势(x,y ,, 8)'和参考速度(v,ar)'。本文的主要目的是提出一个控制规则,以找到合理的目标线性和旋转速度(v,a)'。线性化系统的微分方程对于确定对小干扰的关键倾倒参数很有用。为了避免任何滑倒,引入了速度/加速度限制方案。有或没有速度/加速度限制器的几个合理结果。本文提出的控制规则和限制方法是与机器人无关的,因此可以应用于具有死亡算力能力的各种移动机器人。此方法是在自动移动机器人Yamabico-11上实现的。获得的实验结果接近速度/加速度限制器的结果。
3.1子宫内膜癌从子宫内壁开始。症状可能包括阴道出血,骨盆疼痛,意外的体重减轻,恶心和疲劳。大约23%的子宫内膜癌患者的亚型具有较高的微卫星不稳定性(MSI-H)或DNA不匹配修复(DMMR)缺乏生物标志物。子宫内膜癌对预期寿命和生活质量都有重大影响。患有晚期或复发性子宫内膜癌的患者(这意味着癌症已经超过子宫超出了子宫或以前的治疗后回来)的预后不佳。只有15%在第4阶段诊断出5年或更长时间。影响不仅限于身体健康,而且还限于人们及其家人的心理健康和福祉。患者专家强调,此阶段有效的治疗选择有限,使人们感到沮丧,绝望和抛弃。他们强调了缺乏
Sharma博士是该领域的先驱,以建立印度教Kush Himalaya评估而闻名,这是一项开创性的计划,涉及八个国家和300多名主要研究人员,从业者,专家和决策者。在他的演讲中,他强调了迫切需要讨论和公众共识,以解决紧迫环境挑战的可持续解决方案。他强调,印度教库什喜马拉雅地区是生物多样性的宝库,也是数百万的关键水源,它面临着快速的生物多样性丧失,严重的气候变化影响和灾难风险。'印度教库什喜马拉雅山脉不仅是地理特征。他们是支持多种生态系统和人类生计的生命线。
气候变化以温度和降雨的长期趋势为特征,近年来已经成为一个突出的关注(Seddon等,2016),对森林和草原生态系统的全球碳,水和能量周期产生了重大影响。此外,极端天气事件的频率增加可能会对各种陆地生态系统产生毁灭性后果(IPCC,2023年)。为了进一步研究气候变化对森林和草原生态系统的影响,并支持中国达到其达到其峰值二氧化碳排放和碳中立目标的努力,提出了这一研究主题。该研究主题包括23篇原始研究文章和1篇意见文章,介绍了以下领域的最新进展:(1)森林和草地生态系统响应气候变化的碳,水以及能量循环,以及(2)植被特征和生态系统稳定性的响应和适应性。
在本文中,我们提出了RSTAB,这是视频稳定框架的新型框架,该框架通过音量渲染整合了3D多帧融合。与传统方法背道而驰,我们引入了一个3D多框架透视图,以进行稳定的图像,从而解决了全框架生成的挑战,同时保存结构。我们的RSTAB框架的核心在于S Tabilized R Endering(SR),该卷渲染模块,在3D空间中融合了多帧信息。具体来说,SR涉及通过投影从多个帧中旋转的特征和颜色,将它们融合到描述符中以呈现稳定的图像。然而,扭曲的信息的精度取决于降低的准确性,这是受染色体区域显着影响的因素。为了响应,我们介绍了a daptive r ay r ange(arr)模块以整合深度先验,并自适应地定义了投影过程的采样范围。在方面上,我们提出了以光流的光流限制的限制,以进行精确的颜色,以实现精确的颜色。多亏了这三个模块,我们的rstab示例表现出了卓越的性能,与以前的视野(FOV),图像质量和视频稳定性相比,各种数据集的稳定器相比。
4 ramasamy.s@hit.edu.in , 5 md.devendran@gmail.com 摘要:农业在许多国家的经济稳定中发挥着至关重要的作用,优化作物选择对于提高农业生产力和可持续性至关重要。“使用机器学习方法的作物推荐系统”旨在利用机器学习技术根据各种环境和土壤条件提供精确的作物推荐。通过结合土壤成分、pH 值、温度、湿度、降雨量和地理位置等因素,该系统为特定区域推荐最合适的作物。该系统利用机器学习模型,特别是随机森林和决策树,来分析历史农业数据,预测最佳作物,并改善农民的决策过程。通过在大型数据集上训练模型,它可以确保与现实世界的农业实践相一致的准确预测。该系统的应用可以提高作物产量、可持续的农业实践,并降低与不良作物选择相关的风险。通过使用标准分类指标进行严格评估,该模型的性能证明了其通过帮助农民做出明智的决策来彻底改变农业实践的潜力。该系统有可能成为农业顾问、农民和政策制定者的宝贵工具,确保长期可持续性和生产力的提高。
由于太空和网络空间战争不能局限于单一地理战区,军事领导人和分析人士越来越多地选择强调有必要在五个军事活动领域内及跨领域遏制潜在对手的侵略。”1 新兴技术对当代战争的几乎所有领域都产生了重大影响。它们经常产生新的动态,对战争性质产生重大影响。在过去三十年中,各国越来越多地利用网络中心、战场透明系统、第五代战斗机、远程防空系统、攻击平台、无人机和精确制导弹药。这些系统的广泛采用大大提高了战争的杀伤力。投资于这些技术的国家现在比其他国家拥有显著优势。认识到新技术的重要性并在现代战争中掌握它们至关重要。一套全新的创新,在军事和技术话语中通常被称为新技术,具有影响核战争的能力。随着这些技术的出现,关于“战略稳定”的传统观念受到质疑。这些进步可能会超出军事领域,并侵蚀军事革命的领域。2 技术革命只有四十年的历史,但其影响是巨大的,因为人们已经看到了新发展的快速出现。技术的快速发展和进步催生了网络空间、网络领域、网络战、人工智能 (AI)、智能代理和社交媒体/社交媒体网络。对于日常任务,对技术的依赖性不断增加,加深了复杂性和复杂性。
2型糖尿病(T2DM)在21世纪(国际糖尿病联合会(IDF),2022年)以惊人的速度增长。T2DM及其并发症在所有地区都带来了沉重的疾病负担(Ali等,2022)。确定与T2DM发展有因果关系的因素可以为预防疾病提供重要的证据基础,并促进新治疗策略的发展。肠道菌群(GM)是一个复杂的生态系统,由大约4×10 13种共生细菌,原生动物,真菌,古细菌和病毒组成(Chen等,2021; Martino等,2022)。gm参与了人体的各种生理活性,例如代谢,炎症过程和免疫反应(Fan and Pedersen,2021; Gill等,2022)。越来越多的证据表明,转基因在T2DM等代谢疾病中起重要作用(Gurung等,2020)。T2DM患者患有代谢疾病和慢性炎症状态,并伴有GM障碍(Yang等,2021)。还发现了GM组成的变化与T2DM的发展以及相关并发症的显着关联(Iatcu等,2021),例如,门类细菌群/企业的不平衡与近距离渗透性相关联,与近距离渗透性相关联,并渗透性渗透性,伴有细胞质,伴有细胞质,并渗透性,并伴有细胞处理效果。随后的DM的炎症反应特征(Iatcu等,2021)。也已经报道了几种细菌,例如发酵乳杆菌,足底和酪蛋白,罗斯伯里亚肠道,akkermansia muciniphila和fragilis菌丝,通过降低流量疗法和维持肠道的速度(IIAT)(降低dm)的风险,通过降低DM发育的风险来发挥保护作用(20)。 尽管如此,有必要区分引起疾病的GM的特征以及疾病或其治疗引起的疾病的特征。 孟德尔随机化(MR)是评估可观察到的可修改暴露或危险因素与临床相关结果之间观察到的关系的因果关系的宝贵工具(Sekula等,2016)。 由于孟德尔的种族隔离和独立的分类法,它可以消除与传统观察性流行病学研究相比,可以消除混杂的偏见,并促进了出现的因果途径的分离表型分组风险也已经报道了几种细菌,例如发酵乳杆菌,足底和酪蛋白,罗斯伯里亚肠道,akkermansia muciniphila和fragilis菌丝,通过降低流量疗法和维持肠道的速度(IIAT)(降低dm)的风险,通过降低DM发育的风险来发挥保护作用(20)。尽管如此,有必要区分引起疾病的GM的特征以及疾病或其治疗引起的疾病的特征。孟德尔随机化(MR)是评估可观察到的可修改暴露或危险因素与临床相关结果之间观察到的关系的因果关系的宝贵工具(Sekula等,2016)。由于孟德尔的种族隔离和独立的分类法,它可以消除与传统观察性流行病学研究相比,可以消除混杂的偏见,并促进了出现的因果途径的分离表型分组风险
哺乳动物细胞培养物是生物医学研究中的基石资源,但是已发表的实验的结果通常会遇到可重复性的挑战。这导致着眼于细胞培养条件对细胞反应的影响和实验发现的可重复性。在这里,我们频繁地对溶解的O 2和CO 2进行了光学传感器斑点和CO 2进行原位监测,并在三种广泛使用的人类体细胞和多能干细胞系的标准批次培养物中对细胞增殖和中pH的同时评估。我们整理了来自文献的数据,以证明标准细胞培养物始终表现出环境不稳定性,这表明这可能是影响实验发现的普遍问题。我们的结果表明,在标准批次培养期间,体外细胞培养物始终经历大量的环境参数。这些发现应促进进一步的努力,以增加实验结果与体内生理学的相关性并增强可重复性。
Bidhan Pandit,Bernard Fraisse,Lorenzo Stevano,Laure Monconduit,Moulay Tahar Sougrati。碳涂层的FEPO4纳米片作为Na-ion电池可固定的阴极:具有NA15PB4阳极的有前途的充分。Electrochimica Acta,2022,409,pp.139997。̄̄1016/j.lectacta.2022.139997̄。̄̄̄23562412