我们首次提出了原子中单个单一的自我组装,在簇中(2-6个原子)及其同时的室温稳定稳定锚定在graplene烯中的单个替代si popant上[1]。由于只有少数原子组成的单个原子和原子簇具有不同的物理和化学特性[2,3],因此这些原子结构在固体载体上具有很高的关注,目前吸引了从催化到纳米乳糖的区域中潜在应用的高度关注[4,5]。途径的受控制造和稳定位置仍然很少。在这里,使用定制的制剂室(基本压力〜10 -9 MBAR)将凹入蒸发到悬浮的单层石墨烯(本质上包括一小部分替代的Si杂原子)中,直接耦合到原子分辨率扫描扫描传输透射电子显微镜(STEM)[6]。
2尼日利亚克罗斯河科技大学物理学系摘要 - 在这项研究中,描述了Quadcopter的开发。这表明利用构建软件用于构建发射器和接收器电路,并且该机柜是在本地生产的。由于经常发生的邪教战斗和流血事件,这已成为卡拉巴尔的克罗斯河科技大学校园中的问题,因此需要进行翻新。使用四轮驱动器,为该项目捕获了一些学生和一些热点位置的图像。这个四轮驱动器的组件包括一个小的F450,由玻璃纤维,四个Hubson X4拉丝DC电动机带有Walkera Ladybird Propellers,一个电子速度控制(ESC),一个NANO NANO NANO NRF24L01模块,一个惯性测量单元(IMU)MPU 6050,MPU 6050,lipo powder, 使用MATLAB模拟了从UAV收集的数据。 这些发现与印度电子与传播学院旁遮普邦的可爱专业大学相当可比。 在他们的研究中,创建了一个四肢驱动器,其明确目的是获取有关大气二氧化碳的信息。 我们的四轮飞机的飞行时间只有大约四分之三小时,它只能达到约150米的垂直高度,而他们的GPS模块可以正确稳定,可以根据其GPS模块来稳定位置,可以确定其位置,可以达到700米的垂直高度,并且飞行时间超过4小时。 索引术语 - 四轮驱动器,拉丝直流电动机,ESC,MPU 6050,Lipo电池,螺旋桨,无人机MATLAB。使用MATLAB模拟了从UAV收集的数据。这些发现与印度电子与传播学院旁遮普邦的可爱专业大学相当可比。在他们的研究中,创建了一个四肢驱动器,其明确目的是获取有关大气二氧化碳的信息。我们的四轮飞机的飞行时间只有大约四分之三小时,它只能达到约150米的垂直高度,而他们的GPS模块可以正确稳定,可以根据其GPS模块来稳定位置,可以确定其位置,可以达到700米的垂直高度,并且飞行时间超过4小时。索引术语 - 四轮驱动器,拉丝直流电动机,ESC,MPU 6050,Lipo电池,螺旋桨,无人机MATLAB。
摘要:物理学的概念和定律一直是工程师克服人类挑战和问题的宝贵灵感来源。分类是此类问题在工程科学各个领域中起主要作用的重要例子。表明,歧视性分类器倾向于优于其生成性对应物,尤其是在有足够标记的训练数据的情况下。在本文中,我们使用最小潜在线提出了一种新的物理启发性分类方法。为此,我们首先考虑两组固定点电荷(作为两类数据)和它们之间的可移动分类器线。然后,由于两组点电荷,我们通过最小化分类器线上的总电位积分来找到分类器线的稳定位置。令人惊讶的是,将显示获得的分类器实际上是基于不确定性的分类器,可最大程度地减少分类器线的总不确定性。实验结果显示了所提出的方法的有效性。
尽管空气微生物组及其多样性对于人类健康和生态系统的弹性至关重要,但全面的空气微生物多样性监测仍然很少见,因此对空气微生物组的组成,分布或功能知之甚少。在这里我们表明,基于纳米孔测序的元基因组学可以通过液体撞击和量身定制的计算分析来稳健地评估空气微生物组与主动空气采样相结合。我们为空气微生物组分析提供快速,便携式实验室和计算方法,我们将利用这些方法来稳健地评估受控温室环境的核心空气微生物组和自然室外环境的分类学组成。我们表明,长阅读测序可以通过从头元基因组组件来解决物种级注释和特定的生态系统功能,尽管用作纳米孔测序的输入的碎片DNA量较低。然后,我们使用我们的管道来评估以西班牙巴塞罗那为例的城市空气微生物组的多样性和可变性;该随机实验使人们对城市边界内的高度稳定位置特异性空气微生物组的存在提供了首先见解,并展示了可通过自动,快速和便携式纳米孔测序技术来实现的强大微生物评估。
摘要/总结 摘要:本硕士论文旨在开发一种优化空客飞机水平稳定器几何形状的方法。飞行认证对稳定性和控制提出了一系列要求,任何飞机都必须遵守这些要求。稳定器的梯形平面形状和面积受到这些要求的限制,因为它们对飞机的操纵品质有着至关重要的影响。优化包括找到设计空间中最好的稳定器,使飞机能够通过认证。为了在不实际驾驶飞机的情况下进行这种优化,我们使用了空客工具 E‐Motion,它可以模拟操纵质量标准,输出测试稳定器的可行性。最小化的目标函数是稳定器的重量和阻力的组合。使用空中客车初步设计工具 EP-EH 来评估此目标。该方法的实施是通过模拟工具 I-Sight 进行的,该工具为工程师提供了一组可根据需要选择的采样、近似和优化方法。本报告介绍了该方法在空中客车 A380 特定情况下的构造和结果。A380 的 HTP 理论上可实现的重量和阻力减少分别为 115Kg(1.9%)和 0.58 阻力数(8.4%)。摘要:本项目最后介绍了空中客车飞机水平安装几何优化方法的开发过程。Ensayos en vuelo imponen un conjunto de requerimientos sobre la estabilidad y el control que los aviones tienen que cumplir.梯形植物形状和稳定位置需要根据需要进行限制,否则会影响到 los aviones 的热量。优化了巴士的最佳设置空间,以允许航空认证。实现航空领域的实际优化,利用空客、E-Motion、风量计算标准、以及稳定概率的事实。将目标最小化功能与比索和航空抵抗力结合起来。Otra herramienta de Airbus,EP-EH esta utilizada para evaluar este criterio。纪念空客 A380 的构造和结果。该方法的实现是通过I-Sight仿真工具完成的,该工具为工程师提供了一套采样、近似和优化方法,工程师可以根据需要进行选择。理论上实现的重量和阻力减少量分别为115Kg(1.9%)和0.58阻力数(8.4%)。
摘要/总结 摘要:本硕士论文旨在开发一种优化空客飞机水平稳定器几何形状的方法。飞行认证对稳定性和控制提出了一系列要求,任何飞机都必须遵守这些要求。稳定器的梯形平面形状和面积受到这些要求的限制,因为它们对飞机的操纵品质有着至关重要的影响。优化包括找到设计空间中最好的稳定器,使飞机能够通过认证。为了在不实际驾驶飞机的情况下进行这种优化,我们使用了空客工具 E‐Motion,它可以模拟操纵质量标准,输出测试稳定器的可行性。最小化的目标函数是稳定器的重量和阻力的组合。使用空中客车初步设计工具 EP-EH 来评估此目标。该方法的实施是通过模拟工具 I-Sight 进行的,该工具为工程师提供了一组可根据需要选择的采样、近似和优化方法。本报告介绍了该方法在空中客车 A380 特定情况下的构造和结果。A380 的 HTP 理论上可实现的重量和阻力减少分别为 115Kg(1.9%)和 0.58 阻力数(8.4%)。摘要:本项目最后介绍了空中客车飞机水平安装几何优化方法的开发过程。Ensayos en vuelo imponen un conjunto de requerimientos sobre la estabilidad y el control que los aviones tienen que cumplir.梯形植物形状和稳定位置需要根据需要进行限制,否则会影响到 los aviones 的热量。优化了巴士的最佳设置空间,以允许航空认证。实现航空领域的实际优化,利用空客、E-Motion、风量计算标准、以及稳定概率的事实。将目标最小化功能与比索和航空抵抗力结合起来。Otra herramienta de Airbus,EP-EH esta utilizada para evaluar este criterio。纪念空客 A380 的构造和结果。该方法的实现是通过I-Sight仿真工具完成的,该工具为工程师提供了一套采样、近似和优化方法,工程师可以根据需要进行选择。理论上实现的重量和阻力降低分别为 115 公斤 (1.9%) 和 0.58 阻力数 (8.4%)。
广义关节过度运动(GJH)是韧带松弛的结果,通常以贝顿评分检查,其患病率通常取决于年龄,性别和种族[1,2]。gjh通常是遗传来源,但也可以通过锻炼,拉伸或创伤获得[3,4]。尽管GJH增强了需要灵活性的活动,但它也构成了并发症的风险,特别是肌肉骨骼症状[5-7]。先前作者的初始假设是,超动关节是不稳定的,它倾向于重复的微型创伤,会随着时间的推移破坏机械感受器[8,9]。这将导致关节损伤,关节痛和其他并发症,例如受损的本体感受,强度受损和平衡差[10,11]。当GJH与上述肌肉骨骼症状相关联时,它被称为过度运动频谱障碍(HSD)[12]。尽管GJH是出现肌肉骨骼症状的风险,但肌肉骨骼症状的生物标志物和临床预测因子也很大可变[13-15]。有趣的是,当肌肉骨骼系统的生长正在进行时,在生物学上不成熟的儿童中,过度运动的继承性更为普遍[13,16]。如果患有GJH的孩子更容易容易出现微型创伤,这仍然是一个问题,因为他们的协调较低或具有较小的肌肉力量以适应突然平衡障碍[17]。这提出了一个建议,即未成熟的肌肉力量在GJH中起作用。在病理的背景下,力量和平衡很重要[18]。它们对于许多日常活动和休闲活动至关重要,并且假定两者的赤字将对个人的参与水平产生负面影响[19]。肌肉适应性是肌肉活动不同组成部分(肌肉力量,力量和耐力)的协同作用,使多个肌肉群以各种关节角度的协调方式共同工作,并取决于活动的不同时期[20-22]。肌肉力量是一个人可以产生的最大力量或可以举起的重量[23],而爆炸能力是在运动爆发中立即产生最大肌肉收缩的能力[24]。另一方面,在不疲劳的情况下重复运动的能力是肌肉耐力[25,26]。等距强度通过肌肉收缩对一个关节的最大电阻在一个方向上的最大电阻来测试,其余身体处于稳定位置[27]。最后,执行基本运动技能所需的力量称为功能强度[26]。然而,在等距条件下大部分评估了运动过度的个体的肌肉力量,而功能强度可能更相关