摘要。本文提出了一种基于方位/仰角环跟踪控制器的新型模糊PID控制方案,以提高跟踪实时目标的精度。模糊PID控制器由三个模糊逻辑控制器和一个带模型参考自适应控制的PID控制器组成,其中PID控制器的三个参数的自适应增益由模糊逻辑规则进行微调。所提出的控制算法的隶属函数(MF)与一般算法不同,其中输入和输出的MF彼此不同,例如MF类型,MF数量和显示范围。将所提出的模糊PID控制方法的性能与普通PID控制算法进行了比较。仿真验证了模糊PID控制模型跟踪性能的有效性,该模型具有零超调、良好的瞬态性能和快速收敛跟踪能力。模糊PID跟踪控制算法可以提高系统整体性能,为深入研究基于机载光电稳定平台的控制系统奠定理论基础。关键词:模糊PID,跟踪控制器,优化方案,稳定平台
目录 表格列表 ................................................................................................................................ viii 图表列表 ................................................................................................................................ ix 1 简介 ................................................................................................................................ 1 1.1 主题领域 ................................................................................................................ 1 1.2 一般问题 ................................................................................................................ 3 1.3 项目说明和目标 ...................................................................................................... 4 1.4 论文布局 ................................................................................................................ 5 2 背景信息 ...................................................................................................................... 7 2.1 视线稳定 ............................................................................................................. 7 2.1.1 阻尼与稳定 ................................................................................................ 10 2.1.2 主动与被动 ............................................................................................................. 11 2.2 机载稳定平台 ................................................................................................ 11 2.2.1 无人机
d)由于加入了权力优先计划,县议会将要求政府在2025年5月举行的县议会选举中进行12个月的延迟,以提供一个必要的稳定平台,在该平台上,权力下放提案可以在2025年在2025年在PACE上进展,以确保尽可能迅速实现该地区的利益。
1965 年,LaCoste & Romberg(自 1939 年以来一直生产高精度重力仪)推出了世界上第一台动态稳定平台重力仪。这些仪表首次使从移动的船舶或飞机上进行高精度重力测量成为可能,从而彻底改变了地球物理学界。从那时起,一百多台这样的仪器已经航行或飞行在世界各地,记录了数百万小时的重力数据。
现有的交叉点设计具有双重目标:调节交通流量并确保所有道路使用者的安全。他们通过相互间接的路径来控制车辆和行人的运动,以优化效率和安全性。然而,在迅速的技术进步的背景下,软件定义的功能很普遍,传统的交叉点在很大程度上取决于硬件,从而限制了它们的适应性以及它们可以集成技术升级的便利性。这种限制至关重要,因为紧急技术可以显着提高安全性和运营效率。这些进步通常取决于连接的交叉点的功能,这些交叉点是智能转换系统(ITS)不可或缺的。ITS使用蜂窝V2X技术来促进车辆,基础设施和其他道路使用者之间的强大无线通信,从而支持信号阶段和时间安排,避免碰撞以及合作自动驾驶等功能。尽管取得了这些进步,但车道交叉系统仍然具有策略和不可编程,无法完全满足对运输效率和安全性的不断发展的需求。本文介绍了OpenInter-extions,这是一个变革性的框架,通过合并和模块化高级技术(例如相机系统,激光雷达传感器,V2X通信)和异质稳定平台来重新涉及相交设计。itOpenIntersection旨在支持自适应软件定义的交叉点(SDI)系统的快速开发,验证和部署,以优化交通流量并有效地增强道路安全性。
