与电池相关的起始问题与Kickstart Battery和Start Manager一起成为过去。启动还大大减少了过早的电池更换,并通过在发动机曲柄期间保持计算机和控制电路的稳定电压来最大程度地减少服务中断。它还通过减少电池充电所需的空闲来减少温室气体排放。
分析研究:• 稳态和负载流分析:评估微电网在正常运行条件下的行为,以确保其能够有效满足能源需求并保持稳定性。• 准动态分析:通过结合时间波动,建立在稳态和负载流洞察的基础上,这对于整合可变可再生能源至关重要。• 短路分析:通过识别短路等故障条件的影响,重点评估微电网的弹性。确定可能的最大故障电流,这对于选择合适的保护设备和设计故障管理策略至关重要。• 电压稳定性分析:检查微电网在各种条件下维持稳定电压水平的能力。识别可能导致电压不稳定或崩溃的潜在问题,确保微电网即使在负载或发电突然变化时也能可靠运行。• 保护继电器和协调:
I.引言全球对可持续能源解决方案的推动力是在耗尽的化石燃料储量和环境问题的驱动下,促进了电力电子产品的进步[1]。关键在这些创新中是双向DC-DC转换器,该转换器最初是为电动机驱动器而设计的,以控制速度和制动[2]。今天,他们的应用跨越了关键部门,例如直流驱动器,微电网,可再生能源存储和混合动力汽车,对于管理电力流量和在高功率情况下稳定电压至关重要[3]。但是,这些转换器在高功率应用中面临一些挑战,例如由于系统流动较大,电感器的大小增加,因此转换器的尺寸增加。另外,由于开关现象,输入电流会产生波动,因此为了克服这些问题,引入了转换器中的相互交流拓扑。此拓扑涉及多个阶段,这些阶段彼此并联以共享功率载荷[1]。
钠 (Na) 电池之所以被选为大规模储能候选材料,很大程度上源于这样一个事实:作为地壳中第六大丰富元素和海洋中第四大丰富元素,钠是一种廉价且全球均可获取的商品。钠电池的重大研究和开发可以追溯到 50 多年前。熔融钠电池始于 20 世纪 60 年代末的钠硫 (NaS) 电池,当时它被用作汽车电气化的潜在高温电源 [1]。继 NaS 电池之后,20 世纪 70 年代出现了钠金属卤化物电池(NaMH:例如钠镍氯化物),也称为 ZEBRA 电池(沸石电池研究非洲项目,或最近的零排放电池研究活动),也是考虑到交通运输应用 [2]。钠离子电池 (NaIB) 最初是在 20 世纪 80 年代与锂离子电池 (LIB) 大致同时开发的;然而,由于充电/放电速率、循环性、能量密度和稳定电压曲线的限制,它们在历史上的竞争力不如锂电池 [3]。最近,固态钠电池 (SSSB) 已开始成为候选商业产品,尽管它们在大规模、长时间存储中的适用性目前尚未得到很好的证实 [4]。
按照之前描述的方法15,在90 nm SiO 2 / Si 基底上新沉积的金膜(30 nm Au 和 1 nm Ti 粘附层)上机械剥离非常大规模的单层 MoS 2 薄片。使用光学相机可以轻松识别剥离的 MoS 2,该相机引导 STM 探针位于单层区域之上以进行成像、光谱和传输研究。在进行第一组 STM 测量之前,将样品在 T = 250 °C 的超高真空条件下(p < 10 −10 Torr)退火数小时以去除水和弱键合分子。初始 STM 研究使用金或钨 STM 探针进行。样品随后在 400 °C 下退火以增加硫空位密度。之后,使用用 50% 饱和 KCl 溶液蚀刻的金 STM 探针进行 STM 和原位传输测量。所有 STM 测量均采用在 100K 下运行的可变温度 STM 系统进行。对于 STS 测量,使用 1Khz 下 20 mV 的调制信号。对于传输测量,使用 3.3 nA 或 330 nA 的顺从电流。在每次传输测量之前,使用 MoS 2 带隙内的稳定电压将金 STM 尖端固定在表面上,以确保尖端和 MoS 2 表面之间的真空间隙减小。然后将 STM 尖端进一步靠近表面以提供稳定的机械和电接触。MoS2 的高机械强度可防止在物理接触期间对尖端和样品造成任何损坏 25
马来西亚与许多东南亚国家一样,面临着在能源目标中平衡可持续性、可靠性和可负担性的挑战。马来西亚是否已为可再生能源做好准备?该国已制定了雄心勃勃的目标:到 2050 年实现净零排放,并增加可再生能源在其电力结构中的份额。这些目标令人印象深刻,与全球推动可持续能源发展的趋势一致。然而,实现这些目标需要的不仅仅是雄心壮志。我们需要战略规划、大量投资和创新技术。首相拿督斯里安瓦尔·易卜拉欣 3 月对柏林的访问不仅仅是仪式性的;它强调了国际合作和技术转让在支持马来西亚可再生能源目标方面的重要性。全球伙伴关系对于推进国家能源未来至关重要。马来西亚的可再生能源路线图旨在到 2025 年实现全国 31% 的发电量来自可再生能源,到 2030 年碳排放量减少 45%。截至 2022 年,可再生能源发电量已增长到 9,000 多兆瓦,比 2013 年增长了 50%。然而,可再生能源仅生产了 3.1 太瓦时的电力,而煤炭生产了 77.3 太瓦时的电力。显然,还有增长空间。想象一下来自太阳能和风能等可再生能源的电子无缝流入国家电网。这些能源通常位于偏远地区,远离用电需求旺盛的城市中心。挑战在于高效输送这些能源并确保稳定的供应,尽管可再生能源具有多变性。间歇性,即太阳能和风能等能源生产的波动,可能导致电网不稳定,因为电网传统上依赖于化石燃料的稳定产出。如果电网无法应对这些波动,则可能导致停电或能源短缺。为了避免现有资产搁浅,马来西亚可以使用旋转电网稳定器解决方案重新利用峰值电厂或退役火力发电厂。这种经济高效的解决方案可确保在过渡期间提供可靠的能源供应。使用同步电容器稳定电压和频率可提高电网的可靠性,使可再生能源更容易整合。这种方法支持电网并最大限度地利用现有基础设施,使过渡更加实用且经济可行。
1.0 一般说明 PVX-2506 脉冲发生器设计用于对高达 50 伏和 10 安的半导体器件进行脉冲 IV(电流-电压)特性分析。它也非常适合需要高电流、精密电压脉冲的其他应用。半导体器件的 IV 特性是频率和温度的函数。曲线追踪器和其他“DC”测试系统通常会逐步通过一系列栅极电压,并在每个栅极电压下扫描整个测量范围内的漏极电压。该器件在每个点基本上达到热平衡和电子(半导体陷阱)平衡,产生与实际 RF 操作特性不同的测试特性。通过使用 PVX-2506 对器件进行脉冲处理并在脉冲期间进行测量,可以在器件升温之前进行测量。这可以避免与传统“DC”测试相关的热效应,更接近器件在高频下运行时的特性,并且不会激活半导体“陷阱”。 PVX-2506 采用双向 MOSFET 输出级设计,采用 DEI 的 DE 系列快速功率 MOSFET。此设计提供快速上升和下降时间,过冲、下冲和振铃最小,稳定时间快。这种受控电压波形允许被测设备 (DUT) 在几百纳秒内稳定电压,从而允许在设备开始加热之前进行 IV 测量。可以将静态(偏置)电压施加到脉冲发生器,允许 DUT 保持在非零电压,然后在此电压之上或之下脉冲。PVX-2506 需要输入门信号、脉冲 (VHIGH) 和可选静态 (VLOW) 直流电源输入。输出脉冲宽度和频率由输入门信号控制。输出电压幅度由输入 VHIGH 和可选 VLOW 直流电源幅度控制。前面板控制和监视器提供了在脉冲模式下运行或切换到直流模式的灵活性,在该模式下,VHIGH 电源产生的直流电压直接施加到 DUT。提供集成仪器质量电压和电流探头,以方便脉冲数据采集。输出脉冲通过创新的低阻抗电缆发射。该电缆的设计保持了输出脉冲的保真度,而不会引入脉冲失真或振铃,并提供了一种方便的方法来