摘要 目的。本研究旨在通过优化基于整体和频谱大脑动力学特征的预测多元模型,阐明在视觉引导的等长收缩任务中维持恒定力量水平背后的大脑动力学。方法。18 名受试者被要求按压灯泡并保持恒定的力量水平(屏幕上的条形图显示),并获取脑电图 (EEG)。对于 500 毫秒的间隔,我们计算了力量稳定性指数以及大脑动力学指数:微状态指标(持续时间、发生率、整体解释方差、方向优势)和 θ、低 alpha、高 alpha 和 beta 波段的 EEG 频谱幅度。我们优化了一个多元回归模型(偏最小二乘 (PLS)),其中微状态特征和频谱幅度是输入变量,力量稳定性指数是输出变量。使用 PLS 嵌套交叉验证方法解决了输入变量之间的共线性和模型的普遍性相关问题。主要结果。优化的 PLS 回归模型达到了良好的普遍性,并成功显示了微状态和光谱特征在推断施加力的稳定性方面的预测价值。与视觉和执行控制网络相关的微状态持续时间越长、发生率越高,收缩性能就越好,这与视觉系统和执行控制网络在视觉运动整合中所起的作用一致。意义。微状态指标和脑节律幅度的组合不仅可以在群体层面,而且在个体层面被视为稳定的视觉引导运动输出的生物标志物。我们的研究结果可能对更好地理解单次试验或实时应用中的运动控制以及运动控制研究发挥重要作用。