将夏威夷电网实时数字孪生与西门子的能源管理系统互联,可在无风险环境中将运营商支持系统暴露于真实条件。这些运营商支持系统为夏威夷电力公司提供了可再生能源逆变器的替代设置,以减少功率波动,并使他们能够验证和了解未来电网的管理以及预测电网将如何应对关键事件。所有这些都在使用他们自己的真实能源管理系统的同时完成。这为向可再生能源过渡提供了重要信息,为运营商提供了宝贵的培训机会,并使可再生能源渗透率高的岛屿电网能够大规模稳定运行。因此,能源转型可以在夏威夷的灯火通明的同时成为现实。
NSD3604 是一款高度集成的设备,包括四个半桥(HB2、HB3、HB6、HB7)栅极驱动器和两个电流检测放大器。栅极驱动器提供高级功能,如斜率控制、开关时序反馈和 VGS 握手。电流检测放大器支持高共模电压输入。16 位 SPI 用于配置和控制设备,还可读取状态寄存器进行诊断。设备提供一系列诊断功能,以确保稳定运行。这些功能包括电源电压监视器、电荷泵电压监视器、VDS 过压监视器、VGS 电压监视器和热监视器(警告和关机保护)。
将夏威夷电网实时数字孪生与西门子的能源管理系统互连,可在无风险环境中将运营商支持系统暴露于真实世界条件。这些运营商支持系统为夏威夷电力公司提供了可再生能源逆变器的替代设置,以减少功率波动,并使他们能够验证和了解未来电网的管理以及预测电网将如何响应关键事件。所有这些都在使用他们自己的真实世界能源管理系统的同时进行。这为向可再生能源过渡提供了重要信息,为运营商提供了宝贵的培训机会,并使可再生能源渗透率高的岛屿电网能够大规模稳定运行。因此,能源转型可以在夏威夷的灯火通明的同时成为现实。
电力市场改革为需求侧负荷资源纳入供需调节提供了条件,居民侧电气化水平的提高使居民负荷资源成为需求响应(DR)的优质资源。居民家电以DR的形式参与电网的“双向互动”,可以有效缓解电力供应紧张局面并消纳清洁能源,提高电力系统安全稳定运行。本文首先概括了家庭能源管理系统(HEMS)的架构与功能;其次从先进计量基础设施(AMI)和DR技术入手,探讨了HEMS的关键技术;最后分析了HEMS的控制策略,包括组件模型和各种优化调度算法,并描述了HEMS面临的挑战。
电力市场改革为需求侧负荷资源纳入供需调节提供了条件,居民侧电气化水平的提高使居民负荷资源成为需求响应(DR)的优质资源。居民家电以DR的形式参与电网的“双向互动”,可以有效缓解电力供应紧张局面并消纳清洁能源,提高电力系统安全稳定运行。本文首先概括了家庭能源管理系统(HEMS)的架构与功能;其次从先进计量基础设施(AMI)和DR技术入手,探讨了HEMS的关键技术;最后分析了HEMS的控制策略,包括组件模型和各种优化调度算法,并描述了HEMS面临的挑战。
摘要。设置机器人增材制造机器需要注意几个安全方面,包括不同系统的集成、功能工作区、人机界面和操作的便利性。本文介绍了在设计和组装机器人增材制造单元时应考虑的一些主题。它基于在 SINTEF Manufacturing 的增材制造实验室中设计和组装混合 DED 和研磨单元的经验。该单元旨在确保机器人和增材制造构建单元的安全稳定运行,为实现这一点,它采用钢框架结构,覆盖钢板,并配备通风系统、防激光窗和卷帘门。设计并集成了一个安全系统,以确保单元中运行的不同元件之间的通信和安全机制的协调。
传统电力系统以同步发电机为主,同步发电机被证明具有大惯性和阻尼等固有优点,有利于电力系统的稳定运行。同时,通过调速器和自动电压调节器 (AVR),同步发电机可以很容易地实现频率和电压的调节。惯性通常可以定义为物体对其运动状态变化的抵抗力。在电力系统稳定性方面,惯性表示在短路等扰动下保持转子转速和频率的能力 [1]。该函数由同步发电机的摆动方程确定,该方程描述了发电和负载之间的功率不平衡。当任何扰动导致功率不平衡时,转子将释放或储存与惯性成比例的动能来抵抗频率变化 [2]。这种效应有助于降低频率最低点和频率变化率 (RoCoF) [3],[4]。
三菱重工环境化学工程有限公司 (MHIEC) 开发了 MaiDAS ®,这是用于废物转化能源 (WtE) 工厂的下一代基于 AI 的远程监控和运营支持系统。该系统可实现先进的自动化操作,同时保持工厂运行重要设备的正常运转,并优化蒸发量和废气浓度输出,同时消除与个别操作员相关的可变因素的影响。使用该系统可以实时预测低热值 (LHV)、废物进料量和燃烧条件等值。由系统控制的先进自动化操作可以大大减少人工干预。主蒸汽流量的稳定性也得到了确认。与该系统一起,已经开发的废物坑混合和进料支持系统的改进被认为可以实现稳定运行和降低成本,同时最大限度地提高 WtE 工厂的可持续性。