昼夜节律参与了身体许多方面的调节,包括细胞功能,身体活动和疾病。昼夜节律障碍通常早于神经退行性疾病的典型症状,不仅是非运动症状,而且是其发生和进展的原因之一。神经胶质细胞具有调节其功能以维持脑发育和稳态的昼夜节律。新兴证据表明,小胶质细胞时钟参与了许多生理方面的调节,例如细胞因子释放,吞噬作用,营养和代谢支持,以及小胶质细胞时钟的破坏可能会影响帕金森疾病的多个方面,尤其是帕克森疾病的多个方面,尤其是神经毒素的方法。在此,我们回顾了昼夜节律控制健康和疾病功能的最新进展,并讨论了神经退行性疾病中小胶质细胞钟的新药理干预措施。
异常胆固醇代谢已成为癌症治疗中流行的治疗靶点。近年来,人们对皂苷的抗肿瘤活性的兴趣激增,尤其是它们破坏肿瘤细胞中胆固醇稳态的能力。皂苷调节胆固醇是一个复杂的过程,涉及多种机制。但是,现在有一个显着的全面评论,可以通过胆固醇调节来解决其抗肿瘤作用。本综述将探讨皂苷调节胆固醇的复杂机制,包括调节合成,代谢和摄取,以及与胆固醇的复杂形成。还将概述皂苷如何通过胆固醇调节,增强细胞毒性,抑制肿瘤细胞转移,逆转耐药性,诱导免疫毒素大分子逃脱和屈服。这种全面的分析提供了有关使用皂苷抗肿瘤疗法及其与其他药物的结合的潜力的见解,从而促进了对它们对癌细胞影响的理解。
正常血细胞的寿命有限;必须通过不断更新的后代细胞种群来精确地补充它们。血液的稳态要求这些细胞的增殖有效而严格受到约束。许多独特的成熟血细胞必须由这些祖细胞产生,这是通过对复杂的分化程序的受控过程和执行的受控过程。因此,发展红细胞必须产生大量的血红蛋白,但不能产生粒细胞的骨髓过氧化物酶特征,淋巴细胞的免疫球蛋白特征或纤维蛋白原受体的特征。同样,在循环中维持正常量的凝聚剂和抗凝蛋白需要精心调节的成分产生,破坏和相互作用。了解细胞生长,分化,死亡和关键蛋白质的稳态的基本生物学原理需要对基因的结构和调节表达有透彻的了解,因为现在已知基因是以这种调节的方式存储,传播和表达生物学信息的基本单位。
甲脒铅三碘化物 (FAPbI 3 ) 已成为金属卤化物钙钛矿家族中高效、稳定的钙钛矿太阳能电池 (PSC) 的有希望的候选者,尤其是与早期的甲基铵铅三碘化物 (MAPbI 3 ) 原型相比。这是因为 FAPbI 3 具有更窄的带隙能量 ≈ 1.45 eV——更接近 Shockley-Queisser 最优 [1]——并且比 MAPbI 3 更热稳定。[2] 然而,α 相 FAPbI 3 的形成通常需要高温退火 (≥ 150 ° C) 数十分钟,[3] 而获得的 α -FAPbI 3 在室温下是亚稳态的,因为它会迅速降解为光惰性的非钙钛矿同质异形体 (δ-FAPbI 3 )。 [4] 钙钛矿相的亚稳态归因于甲脒(FA +)的尺寸相对较大,导致Gold-schmidt容忍因子> 1,从而驱动六方晶体结构而不是立方晶体结构的形成。[5]
摘要磷酸肌醇(PI)是真核生物和基因中细胞组织的关键调节剂,其中调谐PI信号传导与人体疾病机制有关。在培养细胞中的生化分析和研究已经鉴定出大量可以介导PI信号传导的蛋白质。然而,这种蛋白质在调节体内细胞过程和后生动物发育中的作用尚待理解。在这里,我们描述了一组基于CRISPR的基因组工程工具,这些工具允许在后生动物开发过程中以空间和时间控制来操纵这些蛋白质中的每种蛋白质。我们证明了这些试剂在果蝇眼中分别耗尽了一组103种蛋白质,并确定了控制眼睛发育的几个新分子。我们的工作证明了该资源在正常发育和人类疾病生物学过程中揭示组织稳态的分子基础的力量。
甲脒铅三碘化物 (FAPbI 3 ) 已成为金属卤化物钙钛矿家族中高效、稳定的钙钛矿太阳能电池 (PSC) 的有希望的候选者,尤其是与早期的甲基铵铅三碘化物 (MAPbI 3 ) 原型相比。这是因为 FAPbI 3 具有更窄的带隙能量 ≈ 1.45 eV——更接近 Shockley-Queisser 最优 [1]——并且比 MAPbI 3 更热稳定。[2] 然而,α 相 FAPbI 3 的形成通常需要高温退火 (≥ 150 ° C) 数十分钟,[3] 而获得的 α -FAPbI 3 在室温下是亚稳态的,因为它会迅速降解为光惰性的非钙钛矿同质异形体 (δ-FAPbI 3 )。 [4] 钙钛矿相的亚稳态归因于甲脒(FA +)的尺寸相对较大,导致Gold-schmidt容忍因子> 1,从而驱动六方晶体结构而不是立方晶体结构的形成。[5]
历史上,胰岛β细胞一直被视为血糖的主要调节器,当胰岛素分泌无法补偿外周组织胰岛素抵抗时,就会导致 2 型糖尿病 (T2D)。然而,血糖也受胰岛素非依赖性机制的调节,而这些机制在 T2D 中失调。有证据表明,中枢神经系统 (CNS) 在胰岛素分泌与胰岛素敏感性变化的适应性耦合以及胰岛素非依赖性葡萄糖处置的调节中都发挥着作用,因此,中枢神经系统 (CNS) 已成为血糖稳态的基本参与者。在这里,我们回顾并扩展了一个整合模型,其中 CNS 与胰岛一起建立和维持防御的血糖水平。我们讨论了该模型对于理解正常血糖稳态和 T2D 发病机制的意义,并强调了可能恢复 T2D 患者正常血糖的集中靶向治疗方法。
蛋白质降解是维持细胞蛋白质稳态的关键机制。溶酶体和/或蛋白酶体去除非功能性蛋白质的功能受损会导致聚集体的形成,而聚集体与帕金森病和阿尔茨海默病等各种疾病的发生有因果关系。另一方面,通过劫持细胞降解机制对靶蛋白进行独特降解有望成为一种治疗癌症、自身免疫和神经系统疾病等疾病的新型治疗策略。与传统的小分子疗法相比,这些降解药物可能具有多种优势,例如扩大“可用药”蛋白质组、延长药代动力学和催化作用方式,从而可以使用较低的全身浓度。分子胶和蛋白水解靶向嵌合体(PROTAC)是迄今为止开发的此类新型药物小分子降解剂(例如LYTAC、PHOTAC、PROTAC、分子胶、AUTAC、疏水标签)中最突出的代表。
正常血细胞的寿命有限;必须通过不断更新的后代细胞种群来精确地补充它们。血液的稳态要求这些细胞的增殖有效而严格受到约束。许多独特的成熟血细胞必须由这些祖细胞产生,这是通过对复杂的分化程序的受控过程和执行的受控过程。因此,发展红细胞必须产生大量的血红蛋白,但不能产生粒细胞的骨髓过氧化物酶特征,淋巴细胞的免疫球蛋白特征或纤维蛋白原受体的特征。同样,在循环中维持正常量的凝聚剂和抗凝蛋白需要精心调节的成分产生,破坏和相互作用。了解细胞生长,分化,死亡和关键蛋白质的稳态的基本生物学原理需要对基因的结构和调节表达有透彻的了解,因为现在已知基因是以这种调节的方式存储,传播和表达生物学信息的基本单位。
正常血细胞的寿命有限;必须通过不断更新的后代细胞种群来精确地补充它们。血液的稳态要求这些细胞的增殖有效而严格受到约束。许多独特的成熟血细胞必须由这些祖细胞产生,这是通过对复杂的分化程序的受控过程和执行的受控过程。因此,发展红细胞必须产生大量的血红蛋白,但不能产生粒细胞的骨髓过氧化物酶特征,淋巴细胞的免疫球蛋白特征或纤维蛋白原受体的特征。同样,在循环中维持正常量的凝聚剂和抗凝蛋白需要精心调节的成分产生,破坏和相互作用。了解细胞生长,分化,死亡和关键蛋白质的稳态的基本生物学原理需要对基因的结构和调节表达有透彻的了解,因为现在已知基因是以这种调节的方式存储,传播和表达生物学信息的基本单位。