高级数据科学家和生物信息学家 Intelligencia AI,希腊雅典 2023 年 - 分子特性(ADMET)预测;临床试验结果预测;癌症治疗反应预测;生物医学知识图谱 机器学习研究员 Insilico Medicine,阿联酋(远程) 2023 年 分子特性(ADMET)预测;梯度提升;循环神经网络 (RNN);不确定性量化;软件设计 高级机器学习工程师/技术主管 Deeplab,希腊雅典 2020 年 - 2022 年 使用图神经网络 (GNN) 进行早期药物发现的虚拟筛选 研发主管;项目管理(2 名机器学习工程师);研究实习生监督(5 名培训生);资金获取(NVIDIA 加速器计划 ∼ 20,000 欧元);JEDI Billion Molecules 抗击 COVID-19 竞赛(入围团队);传播(1 项专利申请;2 篇出版物);研究与实验(模型训练和数据管理);软件开发;与利益相关者的演示和交流 基于 EEG 的脑机接口 (BCI) 和深度神经网络 研发主管;算法团队工程管理(4 名 ML 工程师);项目管理;软件设计和架构 研究助理(博士后) 英国纽卡斯尔大学工程学院 2018–2020 上肢肌电假肢控制的运动和机器学习 研究助理(博士后) 英国爱丁堡大学信息学院 2017–2018 深度学习应用于密码学 软件工程师 英国爱丁堡大学社会与政治科学学院 2013–2016 神经政治研究中 fMRI 实验的软件设计和开发 助教/实验室演示者 英国爱丁堡大学信息学院 2013–2017 ML 与模式识别;概率建模与推理;入门应用 ML;数据挖掘与探索;神经计算研究助理 英国南安普顿大学声音与振动研究所 (ISVR) 2012 用于人工耳蜗用户降噪和增强语音清晰度的 ML 算法
摘要:传统的大米生产通常取决于在单一种植系统中使用密集投入的不可持续的实践。替代品休耕地覆盖种植和米鱼共培养(RFC)提供有希望的解决方案。然而,RFC中休耕覆盖作物的潜力仍未得到充实,并且对土壤微生物的影响很少。在这项研究中,对土壤 - 植物 - 微生物相互作用进行了评估:中国牛奶效率(阿斯特拉加罗斯·西尼科斯·L。)单裁剪(cm),菜籽(CM),菜籽(Brassica napus L.)单裁剪(RP),以及中国奶奶酪和菜籽的组合和中国牛奶的组合(CM cm__rp)。在添加氮(N)的情况下对这些系统进行了评估,其中包括RFC和水稻单一培养(RMC)系统。发现表明用CM的土壤微生物生物量氮(MBN)显着增加。土壤微生物生物量碳(MBC)受N-肥料的影响比农作物物种更大,随着n添加而减少。在RFC系统中,土壤细菌共发生网络表现出更多的连接,但负面的联系增加了。cm_rp显示与无n的CM相似性,但随着n的添加而移到RP。n在间隔中的添加显着增加了锡霉菌曲霉的根比(r/s),与地上生物量减少和总根长有关。与RMC相比,RFC和N添加的RFC降低了CM中厌氧酸酯的相对丰度,同时增加了覆盖裁剪系统的芽孢杆菌和pontibacter。总体而言,随着N的添加,RFC和RMC均显示出土壤细菌多样性指数降低。土壤细菌多样性的变化与土壤MBC,MBN和植物R/S显着相关。连续的休耕地覆盖农作物改变的土壤微生物生物量和影响覆盖作物生物量分布,影响稻田中的细菌成分。这些结果阐明了细菌群落如何对RFC和RMC系统中的n个添加和休闲覆盖种植的反应,从而为稻谷系统中的可持续营养管理提供了见解。
摘要:由黑穗病菌(Ustilaginoidea virens)引起的水稻稻曲病是世界范围内最具破坏性的水稻病害之一,它导致水稻品质和产量的严重下降。作为一种空气传播的真菌病害,水稻稻曲病的早期诊断、监测其流行和病原体的分布对于控制感染尤为重要。在本研究中,开发了一种用于U. virens检测和定量的定量环介导等温扩增(q-LAMP)方法。与定量实时PCR(q-PCR)方法相比,该方法具有更高的灵敏度和效率。所使用的UV-2组物种特异性引物是根据U. virens ustiloxins生物合成基因(NCBI登录号:BR001221.1)的独特序列设计的。q-LAMP检测方法能够在60分钟内检测到6.4孢子/mL的浓度,最佳反应温度为63.4 ◦ C。此外,当纸带上只有 9 个孢子时,q-LAMP 方法甚至可以实现准确的定量检测。建立了 U. virens 检测和定量的标准曲线线性化方程 y = − 0.2866x + 13.829(x 为扩增时间,孢子数= 10 0.65y)。在田间检测应用中,该 q-LAMP 方法比传统观察方法更准确、更灵敏。总之,本研究建立了一种强大而简便的 U. virens 监测工具,为水稻稻曲病的预测预报和管理提供了宝贵的技术支持,也为精准施用杀菌剂提供了理论依据。
在陆地生态系统中,植物叶为高度多样化的微生物群落(称为植物层微生物群)提供了最大的生物栖息地。然而,这些Ubimigitous社区的宿主驱动组装的基本机制在很大程度上仍然难以捉摸。在这里,我们对旨在识别特定宿主链接链接的水稻微生物组进行了大规模和深入评估。一项全基因组关联研究表明,植物基因型与四个细菌秩序,假单胞菌,伯克霍尔德里亚莱斯,肠杆菌和Xanthomo-Nadales之间的牢固关联。某些关联是针对独特的宿主基因组,途径甚至基因的特定关联。化合物4-羟基动力酸(4-HCA)被鉴定为富含假性多农甲菌的细菌的主要驱动力。4-HCA可以由苯基丙烷生物合成途径的宿主植物的OSPAL02合成。OSPAL02的敲除突变体导致假单胞菌丰度降低,叶状部微生物群的营养不良以及水稻植物对疾病的敏感性更高。我们的研究提供了针对新育种策略的特定植物代谢产物和水稻稳态的开放可能性之间的直接联系。
16。Amna Qamar S.等。 “金稻:基因工程,宣传,现在的地位和未来前景”。 水稻研究的质量改进:基因组学和基因工程:第2卷:水稻中的营养生物体现以及除草剂和生物胁迫抗性(2020):581-604。Amna Qamar S.等。“金稻:基因工程,宣传,现在的地位和未来前景”。水稻研究的质量改进:基因组学和基因工程:第2卷:水稻中的营养生物体现以及除草剂和生物胁迫抗性(2020):581-604。
使用立体摄像机实施了特定于现场的杂草检测和分类系统,以减少化学除草剂在稻田中的不利影响。在自然光(NLC)或受控光条件下(CLC)下,使用计算机视觉和元视觉杂种杂种分类器准确区分两个杂草品种和水稻植物。对来自右相机或左相机通道的图像进行了预处理,细分和匹配过程。使用NN-PSO算法的图像从平均值(算术或几何图像)中选择了大多数判别特征。NLC下的立体计算机视觉系统的精度分类结果为算术平均值(AM)为85.71%,几何平均值(GM),测试集为85.63%。同时,CLC下的计算机视觉系统的准确性分类结果达到了AM情况的96.95%,对于GM情况,计算机视觉系统的准确性分类结果始终高于NLC的准确性结果,为94.74%。
泰勒上校曾在美国国务院反恐局任职,负责指导和协调针对国际恐怖主义的政治和行动应对措施,并通过与美国政府各部门和机构协调来实施美国的全球反恐政策。泰勒上校还曾担任美国联邦调查局美国特种作战司令部 (USSOCOM) 联络官,负责制定反大规模杀伤性武器局的政策和应对方案。泰勒上校还曾两次担任驻阿富汗联合特种作战空中部队指挥官 (CJSOAC-A)。在担任现职之前,泰勒上校曾担任佛罗里达州赫尔伯特菲尔德第一特种作战大队指挥官。
摘要 桉树属有 900 多个品种和杂交种,其中许多是珍贵的速生硬木。由于其经济重要性,桉树是较早被破译基因组的树种之一。然而,缺乏有效的遗传转化系统严重制约了该植物的功能基因组学研究。桉树再生和转化的成功在很大程度上取决于基因型和外植体。在本研究中,我们系统地筛选了 12 个桉树品种的 26 个基因型,试图获得具有高再生潜力的桉树基因型。我们开发了两种常见的再生培养基,可用于大多数受试桉树基因型的播种下胚轴和克隆的节间作为外植体。然后,我们使用 DsRed2 作为遗传转化效率测试的视觉标记。我们的结果表明,E. camaldulen 和 E. robusta 适合进行遗传转化。最后,我们分别使用播种下胚轴和克隆节间成功地建立了稳定的农杆菌介导的桉树和桉树的遗传转化程序。总之,我们的研究为桉树的无性繁殖、基因转化、基于 CRISPR 的基因诱变、激活和抑制以及基因的功能表征提供了有价值的手段。
5.3.1. 改造整栋建筑:通过改善隔热性能、提高效率措施和在所有建筑(包括市政厅房产)中整合可再生发电技术(在可行的情况下)来促进织物优先的方法。 5.3.2. 交通脱碳:向低碳交通过渡,包括整合电动汽车(EV)和推广支持性基础设施。 5.3.3. 部署陆上可再生能源:鼓励在更广泛的郡行政区内开发可再生能源,以减少对化石燃料的依赖。 5.3.4. 促进创新:支持能源管理和可持续性方面的技术进步和创新实践。 5.3.5. 加强电力分配网络:促进各级现有电力基础设施的升级,以支持增加可再生能源整合并促进可靠的能源分配。 5.3.6. 天然气网络转型:促进天然气网络的改造以符合脱碳目标,重点关注可持续替代方案。 5.4. LAEP 代表了朗达卡农塔夫地区能源规划的全面和前瞻性方法,以社区参与、基于证据的决策和对“可持续发展”的承诺为基础。
根据新墨西哥州饮用水法规 20.7.10 NMAC,坎农空军基地供水系统约有 7,832 名常年居民,被归类为社区供水系统。供水系统由七口井、五个储水箱、一个处理厂、两个增压站和配送管线组成。这些井的总产水量为每分钟 1,200 加仑 (GPM)。储水箱由钢制成,总容量为 992,000 加仑。处理厂包括使用 l2.5% 次氯酸钠进行消毒。配送网络由大约 80% 的 PVC、10% 的铁和 10% 的石棉混凝土管道组成。水源评估是一份报告,它生成有关潜在污染源以及系统受这些污染源影响的可能性的信息。如果客户想了解有关水源评估的更多信息,请联系 David Torres,电话:505-259-5048,或发送电子邮件至 david.torres@env.nm.gov。