摘要:聚合物因其易于加工、重量轻、绝缘性优异以及机械性能好而被广泛应用于电子封装领域。对散热管理材料的需求日益增长。然而,大规模连续生产薄型高导热聚合物复合材料仍然具有挑战性,尤其是需要控制填料的填充量。在本文中,我们揭示了一种轻松有效的提高导热率的方法,即使用混合填料稻壳(RH)和氮化铝(AlN)与环氧树脂,通过手工铺层技术制成,重量从 30% 到 40% 不等,比例不同(1:1、1:3 和 3:1 wt.%)在当前的研究中被考虑。使用李氏圆盘法测定热导率等热特性。使用热机械分析仪(TMA)通过在氮气下随温度变化来确定热膨胀系数(CTE)和玻璃化转变温度(Tg)。在扫描电子显微镜(SEM)下研究了混杂复合材料的分子结构和外围形貌分析以及与环氧树脂的相互作用。
来自生物质废弃物资源(如燕麦、稻壳、甘蔗渣、香蕉皮、花生壳、苹果渣和玉米芯)的硬碳因优异的可逆容量以及成本和可持续性考虑而受到广泛关注。[6–12] 生物质的天然微观结构在碳化后依然存在,提供大量缺陷和孔隙以及随机取向的伪石墨域。[13] 固有的通道和孔隙创建了相互连接的 3D 结构,改善了电解质的渗透并提供更多的钠通道和离子缓冲库。[14] 此外,一些剩余的杂原子(N、S、P 等)可以通过直接电化学活性共价键或通过引入产生电子受体态的碳空位缺陷来提供更多的储存位点。[15]
源自生物质废物资源的硬碳(例如燕麦片,稻壳,甘蔗渣,香蕉皮,花生贝壳,苹果Pomace和Corncob)受到了广泛的关注,这是由于可逆的能力以及成本和可持续性考虑因素。[6–12]碳化后生物质的自然微观结构保留在碳化后,提供大量的缺陷和毛孔以及随机取向的假含量结构域。[13]固有的通道和孔创建了相互联系的3D结构,可改善电解质渗透,并提供更多的钠途径和离子缓冲库。[14]此外,一些剩余的杂原子(N,S,P等)可以通过直接的电动积极共价键或引入发起电子受体状态的碳空位缺陷来提供更多的存储位点。[15]
Kamphaeng Phet工厂由2家公司的生产基础组成,在1997年生产“ Aji-no-Moto®”产品,以及2003年“ Ajitide I+G”的Ribonucleotides产品,风味增强剂,该产品在2003年,该品牌在工业食品制造中广泛使用,例如Instant Noodles,sap,saleces,satacks of intimatial Food Manufacting我们的两种产品都是由木薯淀粉作为主要原材料生产的。此外,工厂通过使用稻壳生产蒸汽能量而不是燃料油来实施“生物质锅炉技术”。这有助于减少石油进口并减少二氧化碳或温室效应排放,这是全球变暖的原因。此外,它有助于为农业废物创造增值,并为当地农民产生更多的收入。此外,Ajinomoto展览中心也在这里为公众提供鲜味的信息,味精制作和ASV故事。
摘要 Ficus pseudopalma 俗称菲律宾榕、龙血树榕或棕榈叶榕,是桑科的一种本土物种。由于其外观类似棕榈树,当地人将其称为 Lubi-lubi 或 Niyog-niyogan,它作为观赏植物、食物来源和药用资源具有重要的民族植物学价值。鉴于其特有地位,繁殖 F. pseudopalma 对于保护、生物多样性保护和维持生态系统健康至关重要。本研究旨在确定最有效的 F. pseudopalma 茎插繁殖介质以支持这些工作。采用完全随机设计 (CRD),每个处理重复 10 次。从健康母株中收集 10 厘米长的茎插,其中 40 多个插条用作种植材料。准备了三种繁殖培养基:M1(表土、泥炭和锯末,比例为 1:1:1)、M2(表土和沙子,比例为 1:3)和 M3(表土和蒸干稻壳,比例为 1:1)。插穗培育 50 天,在此期间及之后收集根系和芽系发育数据。进行统计分析,包括方差分析和 Bonferroni 调整的事后检验,显著性水平为 P<0.05,以评估结果。研究结果表明,表土、泥炭和锯末的组合(M1)是最有效的繁殖培养基,与对照培养基(M0)相比,其显著促进了根系和芽系的生长。虽然含有表土和沙子的培养基(M2)和含有蒸干稻壳的表土(M3)支持植物生长,但它们的表现不如 M1 显著。有趣的是,虽然 M1 与对照有显著差异,但其他培养基组合在大多数生长参数上没有显著差异。总之,M1 成为 F. pseudopalma 茎插的最佳繁殖培养基,为提高繁殖成功率提供了一种实用方法。本研究通过确定支持这种特有物种生长和可持续性的有效栽培技术,为菲律宾本土植物的保护策略做出了贡献。关键词:无花果、栽培、参数、最佳培养基、生长
海报会议和赞助商的展览和认可;协调员:Keerthana Kirupakaran(例如06&08),带有茶 /咖啡海报ID标题 /作者P1低位级粉煤灰地理聚合物的干缩质:外部条件和粘合剂组成的作用 /粘合剂组成的作用 / Mude Hanumananaik* Bhadury*,Keerthana Kirupakaran,Ravindra Gettu P3 P3协同使用稻壳和甘蔗渣甘蔗:一种可持续的农业垃圾灰烬的方法Chauhan*,Manu Santhanam P5通过实验研究 / Souvik Biswas*,Piyali sengupta P6使用CFRP BARS / SRUTHI KOTTAYAN*P7 VALORDIAMIIIM在侧面安装的技术上,对腐蚀加固的混凝土拱形桥的地震性能评估对加强RC梁的数值研究,对腐蚀的钢筋混凝土拱桥进行地震性能评估。亚硫酸盐水泥 / bipina thaivalappil*,Piyush Chaunsali P8对覆盖有生物膜的钢筋混凝土的阴极保护的调查,用于应用浮动海上风力涡轮机(FOWTS) / DEEKSHA MARGAPURAM*等。
摘要Bokashi肥料是通过堆肥过程回收有机废物的结果,该过程功能可以改善土壤健康和植物的生产。但是,有机废物的质量和堆肥时间的质量受到使用的有效微生物的类型的影响。这项研究旨在评估从三种有效的微生物(EM4,ECO养殖和MA11)产生的有机废物的过程和质量。根据10、15和20 ml/10 kg的有机废物的重量,堆肥时间为30天,由牛粪,稻壳和麸皮与每种类型的微生物溶液混合的有机废物。pH,温度,颜色,水含量,N-有机,C/N比,C/N比,钾和磷酸盐。结果表明,20 mL MA11提供了更快的堆肥过程,最佳的pH值和C/N比。此外,与其他治疗相比,产生的水含量较低,营养成分增加。最佳数量的MA11的使用将产生高质量的有机废物,并迅速而不会引起其在土壤中的环境问题而不会引起环境问题。
日常生活中先进复合材料的使用量不断增加,并取代了现有的整体材料。这些复合材料是根据人类的特定应用需求而设计和制造的,也符合标准要求。在本研究中,从农业和工业废弃物中提取的陶瓷增强材料铝金属基复合材料,即AA7075/焊渣和 AA7075/稻壳灰通过液态金属搅拌铸造路线制造,增强材料含量在基体中从 2 到 12(wt.%)不等。测量了 AA 7075 金属基复合材料的机械和微观结构特性,并与基材进行了比较。结果表明,复合材料的机械强度和硬度有所提高。在增强颗粒浓度较高的情况下,冲击能量也显著提高。复合材料的冲击能量在 9% 和 12% 时增加到 3 J,12% 焊渣 MMC 获得的最大抗拉强度为 173 MPa。12% 焊渣 MMC 获得的最高硬度为 98 BHN。此外,微观结构结果反映了搅拌铸造工艺的显著晶粒细化,基质中具有良好的界面特性,农用增强材料颗粒分散均匀。关键词:力学性能;工业废弃物;AA7075;农业废弃物;微观结构分析
抽象的超高效果纤维增强混凝土(UHPFRC)是一种新型的建筑材料,表现出出色的机械和耐用性特征。最近,与其他类型的混凝土相比,UHPFRC具有显着优势。这项调查对用于开发UHPFRC的基本原理,原料,生产和制造技术进行了深入的评论。UHPFRC的设计以核心原则为指导,包括增强结构密度,微观结构的完善,孔隙率的降低和韧性增强。选择成分材料对UHPFRC的特征,生产中使用的技术及其固化过程的复杂性具有重大影响。可以通过掺入广泛获取的补充胶结成分(例如稻壳灰(RHA)和纳米颗粒,而不是胶结)以及掺入硅烟料来实现材料成本而不损害强度的材料成本。与环境固化相比,UHPFRC中升高温度固化的使用导致更紧凑的混凝土基质和提高的性能。但是,这种方法从根本上限制了UHPFRC的潜在应用。因此,UHPFRC生产的当前趋势正在朝着使用随时可用的原材料,传统铸造方法的应用以及在环境温度下实施固化过程的趋势。本评论试图加深我们的
摘要:在二十一世纪,工程纳米材料(ENM)吸引了兴趣的不断增长,在全球范围内彻底改变了所有工业部门。不断扩大的世界人口和新的全球政策的实施越来越多地推动社会迈向生物经济,重点是促进采用基于生物的纳米材料,这些纳米材料功能性,具有成本效益,并且潜在地暗示在不同领域,包括医疗领域,包括医疗领域。这项研究集中于基于生物的和合成起源的二氧化硅纳米颗粒(SIO 2 -NPS)。SiO 2 -NP由二氧化硅组成,二氧化硅是地球上最丰富的化合物。由于其特征和生物相容性,它们在许多应用中广泛使用,包括食品工业,合成过程,医学诊断和药物输送。使用斑马鱼胚作为体内模型,我们评估了与商用的亲水性粉丝NPS(SIO 2 -AerosiL200)相比,稻壳(Sio 2 -RHSK NPS)的无定形二氧化硅NP的影响。我们评估了在组织化学和分子水平上胚胎暴露于两种纳米颗粒(NP)的结果,以评估其安全性,包括发育毒性,神经毒性和促炎潜能。结果显示了两种二氧化硅NP之间的差异,这表明基于生物的SIO 2 -RHSK NP不会显着影响中性粒细胞,巨噬细胞或其他先天免疫系统细胞。