碘缺陷代表了全球一个公共卫生问题。为了增加饮食中碘的量,已经尝试了植物的生物强化策略。他们依靠碘的外源给药来增加其吸收和积累。但是,碘在植物中不稳定,可以通过由无害对臭氧层(HOL)基因编码的特定甲基转移酶的作用挥发为碘化甲基。大气中碘化甲基的释放是由于其臭氧耗竭潜力而对环境的威胁。稻田是碘化甲基最强的生产者之一。因此,碘生物化化的农艺学方法不适合这种作物,从而进一步增加了碘排放。在这项工作中,我们使用了基因组编辑CRISPR/CAS9技术来淘汰稻米基因并研究其功能。oshol1由于淘汰赛废除了该过程,因此导致了碘化甲基甲基生产的主要参与者。此外,它的过表达加强了它。相反,Oshol2的敲除未产生效果。我们的实验有助于阐明水稻基因的功能,提供工具来开发新的水稻品种,并减少碘排放,因此更适合于生物实力化计划而不进一步影响环境。
在过去的几十年中,发展中国家的食品供应连锁店被一系列(通常是一系列汇合处)的冲击袭击,包括俄罗斯 - 乌克兰战争,COVID-19,从飓风到洪水到干旱,动物和植物疾病,动物和植物疾病的气候冲击,对道路繁重和当地人的强化以及对所有这些的影响,以及对所有这些质疑,以及各种各样的质量。然而,供应链在很大程度上具有弹性,以令人惊讶的方式进行调整和弹跳。我们表明,这通常涉及一个段或一个价值链的深度“枢纽”,而另一个链接“共同涉足”以促进前者的枢纽。我们提出了一个概念框架,然后以非洲和亚洲的各种例子进行说明,例如亚洲零售商向电子商务转向电子商务,并通过送货中间人进行互联网;向非洲和亚洲农民的优质园艺生产转向高质量的园艺生产,并通过移动外包服务与农业和营销共同欺骗;以及建立冗余端口,以保护稻米铣削行动免受农业综合企业和物流公司的气候冲击。本文为政策提供了促进这些适应和农业综合企业的弹性策略的影响。
Majority of the regions in the country posted declines in their palay production, namely Central Visayas (-27.9 percent), Caraga (-11.9 percent), Bicol Region (-11.7 percent), SOCCSKSARGEN (-11.6 percent), CALABARZON (-9.4 percent), Davao Region (-7.7 percent), Zamboanga Peninsula (-7.0 percent), Western Visayas (-6.9%),东部米沙ya(-4.9%),米马罗帕(-2.9%)和棉兰老岛北部(-0.03%)。这些区域的负面性能是由于以下因素造成的:•由于中央米沙ya和达沃地区恶劣天气条件的不良影响以及灾难以及诸如Caraga的热带抑郁症和诸如Caraga的Typhoon Typhoon Tisoy和Ursula tiSoy和Ursula地区的灾难,以及灾难。 •连续的厄尔尼诺现象的不利影响,例如:(a)减少米沙ya,卡拉加山,卡拉巴宗,Zamboanga半岛,东部米沙yas和棉兰老岛的中部收获的地区; (b)Soccsksargen,Western Visayas和Mimaropa的供水和降雨不足; •由于BICOL和东部米沙ya的Palay农场门价格下降以及实施稻米粉状法,因此产量降低。
大米是全球的主食和模型作物,可以从野生亲戚的新遗传学引入新的遗传学中受益。在热带世界中,AA基因组基因组中的野生米与驯化的大米密切相关。由于其在驯化大米范围内的地方,澳大利亚野生水稻种群是稻米育种独特特征的潜在来源。这些水稻物种为改进提供了多种基因库,可用于抗压力,耐药性和营养品质等理想性状。但是,它们的特征仍然很差。The CRISPR/Cas system has revolutionized gene editing and has improved our understanding of gene functions.再加上对该物种的基因组信息的增加,可以通过基因组编辑技术来修饰澳大利亚野生水稻中的基因,从而生产新的家养。另外,可以将这些水稻物种的有益等位基因掺入培养的大米中,以改善关键特征。在这里,我们总结了澳大利亚野生水稻的有益特征,可用的基因组信息以及基因编辑的潜力发现和理解新等位基因的功能。此外,我们讨论了这些野生水稻物种的潜在驯化,以实现全球水稻生产的健康和经济利益。
农业和合作社部长Narumon Pinyosinwat周一表示,泰国的生产是泰国以减少排放为目标的部门之一,以实现其到2050年的目标。农业将其列为该国第二高的温室气体发射极端。水稻种植的甲烷占泰国农业部门排放量的40%。narumon说,促使更环保种植覆盖了超过490万个水稻耕种和超过7000万种农田。稻米部已经实施了一种湿干稻种植方法,重点是减少甲烷排放的水。该部门正在帮助22个省的约3,300名农民实施这种耕种方法。潮湿和干燥的种植可以减少温室气体排放,减轻气候变化和PM2.5空气污染,促进向低碳经济的过渡并增加农民的收入。农业和合作社部也在促进微生物,而不是燃烧作为清除稻草和茬的一种方式,从而减轻环境影响并提高土壤的生育能力。“目前,我们可以使用潮湿和干稻种植,氮肥和微生物燃烧作物燃烧,在混乱的Phraya河盆地中生产1000万个低碳米饭。”
随着农业成本和能源在农业中的利用增加,在山地上单米制的传统实践既不可持续,也不是环保的。有必要确定具有高能量效率,生产力和低全球变暖潜力(GWP)的作物多样化选择。在本实验中,完成了三年(2016-2019)的包含系统分析(MCP)系统,即米饭(R),纤维小米(FM),黑克(BG),马(HG),HG),鸽子(HG),Pigeon PEA(PP)和四个Intercropped Systems VIZ。R + BG,R + HG,FM + BG和FM + Hg。 关键目标是评估这些多样的生产系统的能源,碳平衡和GWP的流量。 水稻被记录为一种能量偏竭作物(27,803 MJ ha-1),而马克的含量是最低的能量用途(26,537 MJ ha-1)。 鸽子豌豆(130,312 MJ HA-1)和多样化的间作系统(142,135 MJ HA-1)的总能量输出分别比单养殖系统高65.3%和80.3%。 大米和水稻基间生产系统显示出更高的碳足迹(1,264–1,392千克CO 2等级 ha -1)。 结果表明,R + BG和R + Hg是最能量的生产系统,具有较高的能量比(5.8和6.0),较高的碳效率(7.41和8.24)以及碳可持续性指数(6.41和7.24)(6.41和7.24),与3.30、3.61、3.61,以及2.61相对于3.30、3.61,以及2.61的观察。 平均而言,稻米和大米的生产系统的GWP比其他生产系统高7.4倍。R + BG,R + HG,FM + BG和FM + Hg。关键目标是评估这些多样的生产系统的能源,碳平衡和GWP的流量。水稻被记录为一种能量偏竭作物(27,803 MJ ha-1),而马克的含量是最低的能量用途(26,537 MJ ha-1)。鸽子豌豆(130,312 MJ HA-1)和多样化的间作系统(142,135 MJ HA-1)的总能量输出分别比单养殖系统高65.3%和80.3%。大米和水稻基间生产系统显示出更高的碳足迹(1,264–1,392千克CO 2等级ha -1)。结果表明,R + BG和R + Hg是最能量的生产系统,具有较高的能量比(5.8和6.0),较高的碳效率(7.41和8.24)以及碳可持续性指数(6.41和7.24)(6.41和7.24),与3.30、3.61、3.61,以及2.61相对于3.30、3.61,以及2.61的观察。平均而言,稻米和大米的生产系统的GWP比其他生产系统高7.4倍。在生产率方面,鸽子和FM + Hg的含量较高,水稻等效产量为8.81和5.79 t ha-1,有益成本比分别为2.29和1.87。因此,本研究表明,基于木豌豆和纤维小米的间作系统是印度东部地区的雨水高地农业生态系统的最合适的农作物多样化选择。
路易斯安那州气候温暖潮湿,适合多种水稻病害的流行和流行。水稻经常受到这些疾病的损害,导致产量、稻米质量和种植者收入大幅下降。种植者还因使用杀菌剂来控制这些疾病而遭受间接损失。路易斯安那州最重要和最常见的叶病包括由真菌 Thanatephorus cucumeris (Frank) Donk 引起的纹枯病(图 1-2)。 (Rhizoctonia solani Kuhn) 引起的稻瘟病 (图 3-4),由真菌 Pyricularia grisea Sacc. 引起的稻瘟病 (图 3-4),由真菌 Sphaerulina oryzina Hara (Cercospora janseana (Racib) 0. Const.) 引起的窄褐斑病 (图 5),由真菌 Cochiobolus miyabeanus (Ito & Kur.) Drech. 引起的褐斑病 (图 6),由真菌 Entyloma oryzae H. & D. Sydow 引起的叶黑粉病 (图 7),以及由真菌 Magnaporthe salvinii (Catt.) Krause & Webster (Sclerotium oryzae Catt.) (9, 11) 引起的茎腐病 (图 8)。在正常情况下,石楠病和稻瘟病是主要病害,严重到需要使用杀菌剂。然而,偶尔,茎腐病和窄褐斑病严重到需要治疗。通常,这些和其他轻微病害可以通过针对鞘疫病和稻瘟病管理的杀菌剂应用来减少。通过杀菌剂喷洒,管理这些轻微病害可以提高总产量和质量。
与植物生命活动密切相关的根部内生微生物的多样性与植物生长阶段有所不同。这项关于稻米jiafuzhan的研究探索了植物生命周期中根部内生细菌和真菌及其动力学的多样性。分别获得了16S核糖核糖核酸(16S rRNA)和内部转录间隔基(ITS)基因,12,154个操作分类学单元(OTUS)和497个Agplicon序列变体(ASV)。使用多样性和相关性分析分析了第一个作物的幼苗,耕作,耕作,接头,标题和成熟阶段,在再生后的13、25和60天(分别在标题,完整的标题和第二个作物的成熟阶段)。在生长阶段的α多样性和β多样性中存在显着差异。此外,线性判别分析(LDA)效应大小(LEFSE)分析显示,每个生长阶段都有生物标志物细菌,但是在每个阶段都不存在生物标志物真菌。相关分析表明,细菌和真菌生物标志物相互作用。此外,在所有生长阶段都存在氮固定属。这些发现表明了在不同生长阶段的ratooon大米的根部内生微生物的模式,并且它们为第二种ratoon大米的高产量提供了新的见解(鉴于各种细菌和真菌的丰度)。
在埃塞俄比亚,水稻作物被认为是一种战略性粮食安全作物,预计将为确保该国的粮食安全提供贡献。Bennch Sheko地区是西南地区国家的主要水稻生长区之一。这项研究是针对特定目标进行的,以调查影响小农户市场供应大米市场的因素,并确定研究领域中与水稻生产有关的限制。两阶段抽样技术被采用了119个代表性的稻米家庭。使用描述性的术语和适当的计量经济学模型来分析收集的数据。多个线性回归模型用于分析影响水稻市场供应的因素。该研究的描述性结果表明,家庭水平的平均年度水稻产量为2.8吨,其中有70%的人提供给市场。计量经济学的结果表明,农场规模,信用使用,年收入,牛的数量以及生产的大米数量严重影响了一个地区的水稻市场供应。与该地区水稻生产有关的主要限制是缺乏适当的杂草管理实践,改进的种子,适当的施肥方法和时间,机构支持,疾病和收获后处理问题也很重要。研究结果表明,应注意通过发电和广泛的需求驱动的水稻生产和收获后处理技术的广泛证明,以提高生产和生产力,以使市场供应更好,并使小农户有益于市场。
echinochloa物种是稻米作物中最麻烦的杂草之一,由于除草剂的耐药性,它们的控制受到了阻碍。这项研究的目的是确定imazethapyr和Penoxsulam在Barnyardgrass [echinochloa crus-galli(L.)Beauv。] Beauv。具有不同的ALS基因突变。26个生物型,23种具有抗糊状抗性,其中10种对甲氧克氨甲抗性。Ser653ASN的imazethapyr的电阻指数(RI)为5.7 - 19.5,ALA122THR和ALA205ASN为26.7 - 68.3,TRP574LEU的电阻为ALA122TH和ALA205ASN,为70.9 - 252.9。只有TRP574LEU也导致对毒素的耐药性。双重ALS突变ALA122ASN + TRP574LEU导致imazethapyr和Penoxsulam的RI高于2800。在出现前施用的penoxsulam的ED 50分别比易感和抗性生物型的出现后三分和六倍。仅对于低耐药水平突变Ser653ASN的生物型,在出现前的iazethapyr在出现前的效果比出现后更有效。除草剂Quinclorac的疗效对于易感和抗性生物型的出现前后的应用相似。ALS突变ALA205ASN和ALA122ASN + TRP574LEU首次在Barnyardgrass中报道。在出现前的ALS抑制剂的使用应优先于具有抵抗性barnyardgrass的田间出现后出现,并且需要使用这些产品来控制其他非耐药杂草。
