致谢 作者谨向瑞典航天界表示感谢;感谢瑞典国家航天委员会的 Kerstin Fredga 教授、Per Tegnér、Per Nobinder、Silja Strömberg、Lennart Nordh 博士等;感谢 Göran Johansson、Olle Norberg、Claes-Göran Borg、Peter Möller、Hans Eckersand、Peter Sohtell、Per Zetterquist、Jörgen Hartnor、Tord Freygård 以及航天工业内众多其他太空爱好者。在瑞典国防界,我要感谢国防物资管理局的 Manuel Wik、Mats Lindhé、Lars Andersson、Thomas Ödman、Björn Jonsson 和 Curt Eidefeldt;感谢瑞典国防学院的 Bo Huldt 教授邀请我为战略年鉴做出贡献;瑞典武装部队的 Anders Eklund、Anders Frost、Urban Ivarsson、Lars Carlstein、Göran Tode、Rickard Nordenberg、Ulf Kurkiewicz 和 Peter Wivstam;以及瑞典国防无线电研究所的 Bo Lithner。法国外交部(对外关系部 - 文化关系总局)提供的奖学金使我得以在 1982 年至 1983 年期间在巴黎度过了三个学期,在巴黎大学学习理论物理学和天体物理学。我还要感谢林雪平技术大学的 Torsten Ericsson 教授在我担任巴黎助理技术专员期间的指导,以及 KTH 的 Anders Eliasson 博士。还要感谢爱因斯坦和薛定谔的前学生、意大利帕维亚大学的 Bruno Bertotti 教授,他认可我在日内瓦联合国“防止外空军备竞赛特设委员会”的工作,并邀请我作为第四届卡斯蒂利翁切洛国际会议“促进核裁军 - 防止核武器扩散”的发言人。关于我在日内瓦的工作
此次最后一次彩排由位于凯旋门顶部的“星形”指挥和协调站负责监控,各飞机和直升机巡逻队的领导以及他们的二号队员将练习沿香榭丽舍大街游行。
摘要 — 随着数字化转型的新工业革命,制造运输流程中可以采用更多智能和自主系统。自动驾驶汽车 (AV) 的安全性具有减少事故和为驾驶员和行人保持谨慎环境的明显优势。因此,数据驱动汽车的转型与数字孪生概念相关,特别是在自动驾驶汽车设计的背景下。这也提出了采用新安全设计以提高整个自动驾驶汽车系统的弹性和安全性的必要性。为了以端到端的方式为智能制造运输启用安全的自主系统,本文介绍了考虑安全和安保功能的主要挑战和解决方案。本文旨在确定一个用于车辆数字孪生的标准框架,以促进数据收集、数据处理和分析阶段。为了证明所提方法的有效性,分析了车辆跟随模型的案例研究,该模型通过操纵雷达传感器测量值试图造成碰撞。本文的洞察力可以为未来在自动驾驶汽车行业采用数字孪生的相关研究铺平道路。
T&E在今天至2050年之间开发了三种用于电池原材料的需求,尤其是锂,镍,钴和锰的情况。所有场景都假设到2050年的乘客运输充分电气化,并加速了电池电动汽车的摄取,直到现在从现在开始最大化CO 2节省。“照常业务” -BAU-场景采取了当前预期的电池大小和化学行业趋势,以及现状的私家车活动。“加速创新,更少的汽车km”(或加速 - 场景)假设向较小的电池进行了实质性转移,更快地吸收了具有较少关键金属的电池化学物质(例如锂电池,没有钴或镍(LFP)或钠离子电池),而私人汽车驱动的公里更少。最终的“积极创新和更少的汽车公里”(或激进)的情况将这些假设带到了另一个缺点,以实现更激进的变化。
得益于 P2F 计划,A320 系列还可用作货机。A320P2F 计划为已完成客机实用运营服务的 A320 和 A321 提供客机转货机的机会。作为国内和地区快运的最佳选择,它可在 1,900 海里的航程中装载多达 27 公吨的货物,并在机上提供可容纳 14 个大型集装箱/托盘的空间
图片说明 - 2024 年 2 月 8 日,空中客车印度和南亚总裁兼董事总经理 Rémi Maillard 在印度新德里向印度民航和钢铁部部长 Shri Jyotiraditya M Scindia 展示 A220 飞机模型,印度民航和公路运输及公路国务部长 VK Singh 将军(已退休)和 Dynamatic Technologies 首席执行官兼董事总经理 Udayant Malhoutra 出席了此次会面。为大力推动印度政府的“印度制造”愿景,空中客车已将其 A220 系列飞机舱门的制造和组装合同授予位于班加罗尔的 Dynamatic Technologies。这是印度获得的最大航空航天出口合同之一。
该博士职位是对EISCAT 3D基础设施项目和相关研究成果的战略支持的一部分。这里提供了两组项目:第一个链是基于对所谓的等离子体线的研究,这些信号可以通过不一致的散射技术来衡量,这是与“微型”等离子体物理学有关的主题。第二链涉及电离层与热层的耦合,并属于“宏”等离子体物理的领域。实际上,这两个链的项目都可以观察,基于模型或两者的组合。在项目期间,学生将有机会旅行和参观国外的合作者。
遥感和机器学习的技术和方法论进步为推进野生动植物调查创造了新的机会。我们组建了一个实践社区(COP),以利用这些发展,以探索从管理层的角度来提高空中野生动植物监测的效率和有效性。COP的核心目标是组织遥感和机器学习方法的开发和测试,以改善支持管理决策的空中野生动植物种群调查。从2020年开始,COP合作确定了由野生动植物调查数据所告知的自然资源管理决策,重点是水鸟和海洋野生动植物。我们调查了我们的会员资格以建立1)他们使用野生动植物数量数据的管理决定; 2)在遥感/机器学习方法出现之前,如何收集这些计数数据; 3)过渡到遥感/机器学习方法学框架的动力; 4)从业者过渡到此框架时面临的挑战。本文记录了这些发现,并确定了朝着基于遥感的野生动植物调查迈向野生动植物管理方面的研究优先级。
在 2017 年跨部门/行业培训、模拟和教育会议 (I/ITSEC) 上,总结道“大量的训练飞行将耗费大量资金,因此需要更多的模拟”并且“我们需要将模拟提升到前所未有的水平。”
摘要 - 这项研究的重点是分析Chaviña湿地的碳储存能力,目的是估计空中生物量中存在的碳储备。为此,使用0.25 m 2 Quadrat随机获得17个样品。随后,每个样品在60°C的温度为24至72小时的温度下在烤箱中进行干燥过程,直到它们达到恒定的重量为止。接下来,应用了Walkley和Black方法来确定每个样品中的碳含量。最后,进行了计算以获取存储在空中生物质中的碳库存。此外,进行了统计测试,以确定地上生物量中碳百分比与沼泽水平(高,中和低)存储在地上生物量中的碳之间的差异。获得的结果表明,三个沼泽水平之间的碳库存没有显着差异。此外,可以量化湿地生物量存储总计18 628 TC和隔离器70 904 TCO 2。这一发现将Chaviña湿地作为重要的碳储层的相关性。