目的:研究旨在开发一种更好的听觉警报设计,以提高空中交通管制员的态势感知能力。方法:参与者是七十七名合格的空中交通管制员。实验在爱尔兰航空局位于香农和都柏林的空中交通管制操作室进行。参与者被告知试验与 COOPANS 空中交通管制有关。使用两个受试者间因素(警报设计和经验水平)进行方差分析,以分析 ATCO 对三个关键事件的响应时间。使用 Bonferroni 检验对响应时间的平均差异进行事后分析。结果:在 STCA、APW 和 MSAW 中,ATCO 对声音警报和语义警报的响应时间存在显著差异。管制员的经验对 ATCO 对 STCA 和 APW 的响应时间没有显著的主效应。此外,警报设计和经验水平对 ATCO 对 STCA、APW 和 MSAW 的响应时间没有显著的相互作用。结论:结果表明,COOPANS ATM 系统中部署的声音警报为 ATCO 提供了 1 级态势感知,而语义警报不仅为感知警报提供 1 级态势感知,还提供 2 级和 3 级态势感知,以帮助 ATCO 了解关键事件,从而制定更合适的解决方案。因此,以人为本的语义警报设计可以显著加快 ATCO 对 STCA 和 APW 的响应。此外,语义警报可以通过加快新手和经验丰富的空中交通管制员的响应时间来缓解专业知识差异。
摘要 — 随着数字化转型的新工业革命,制造运输流程中可以采用更多智能和自主系统。自动驾驶汽车 (AV) 的安全性具有减少事故和为驾驶员和行人保持谨慎环境的明显优势。因此,数据驱动汽车的转型与数字孪生概念相关,特别是在自动驾驶汽车设计的背景下。这也提出了采用新安全设计以提高整个自动驾驶汽车系统的弹性和安全性的必要性。为了以端到端的方式为智能制造运输启用安全的自主系统,本文介绍了考虑安全和安保功能的主要挑战和解决方案。本文旨在确定一个用于车辆数字孪生的标准框架,以促进数据收集、数据处理和分析阶段。为了证明所提方法的有效性,分析了车辆跟随模型的案例研究,该模型通过操纵雷达传感器测量值试图造成碰撞。本文的洞察力可以为未来在自动驾驶汽车行业采用数字孪生的相关研究铺平道路。
遥感和机器学习的技术和方法论进步为推进野生动植物调查创造了新的机会。我们组建了一个实践社区(COP),以利用这些发展,以探索从管理层的角度来提高空中野生动植物监测的效率和有效性。COP的核心目标是组织遥感和机器学习方法的开发和测试,以改善支持管理决策的空中野生动植物种群调查。从2020年开始,COP合作确定了由野生动植物调查数据所告知的自然资源管理决策,重点是水鸟和海洋野生动植物。我们调查了我们的会员资格以建立1)他们使用野生动植物数量数据的管理决定; 2)在遥感/机器学习方法出现之前,如何收集这些计数数据; 3)过渡到遥感/机器学习方法学框架的动力; 4)从业者过渡到此框架时面临的挑战。本文记录了这些发现,并确定了朝着基于遥感的野生动植物调查迈向野生动植物管理方面的研究优先级。
Ivan Alonso 1,Cristiano Alpigiani 2,Brett Altschul 3,HenriqueAraújo4,Gianluigi Arduini 5,Jan Arlt 6,Leonardo Bardurina 7,AntunardBalaž8,Satvika Bandarupally 9,10,Barry C. Barry C. Barry C. Barish C. Barish C. Barish 11,Michele Barone 13 E Battelier 17,Charles FA Baynham 4,Quentin Beaufils 18,Aleksandar Beli´c 8,JoelBergé19,Jose Bernabeu 20,21,Andrea Bertoldi 17,Robert Bingham 22,23迭戈·布拉斯 24 , 25 , 凯·邦斯 26† , 菲利普·布耶 17† , 卡拉·布赖滕贝格 27 , 克里斯蒂安·布兰德 28 , 克劳斯·布拉克斯迈尔 29 , 28 , 亚历山大·布列松 19 , 奥利弗·布赫穆勒 4 , 30† , 德米特里·布德克 31 , 32 , 路易斯·布加略 33 , 谢尔盖·伯丁 34 , 路易吉·卡恰普奥蒂 35† , 西蒙尼·卡莱加里 36 , 泽维尔·卡尔梅特 37 , 达维德·卡洛尼科 38 , 本杰明·卡努埃尔 17 , 劳伦蒂乌-伊万·卡拉梅特 39 , 奥利维尔·卡拉兹 40† , 多纳泰拉·卡塞塔里 41 , 普拉提克·查克拉博蒂 42 , 斯瓦潘·查托帕迪亚伊 43 , 44 , 32 , Upasna Chauhan 45 , Xuzong Chen 46 , Yu-Ao Chen 47 , 48 , 49 , Maria Luisa Chiofalo 50 , 51† , Jonathon Coleman 34 , Robin Corgier 18 , JP Cotter 4 , A. Michael Cruise 26† , Yanou Cui 52 , Gavin Davies 4 , Albert De Roeck 53 , 5† , Marcel Demarteau 54 , Andrei Derevianko 55 , Marco Di Clemente 56 , Goran S. Djordjevic 57 , Sandro Donadi 58 , Olivier Doré 59 , Peter Dornan 4 , Michael Doser 5† , Giannis Drougakis 60 , Jacob Dunningham 37 , Sajan Easo 22 , Joshua Eby 61 , Gedminas Elertas 34 , John Ellis 7 , 5† , David Evans 4 , Pandora Examilioti 60 , Pavel Fadeev 31 , Mattia Fanì 62 , Farida Fassi 63 , Marco Fattori 9 , Michael A. Fedderke 64 , Daniel Felea 39 , Chen-Hao Feng 17 , Jorge Ferreras 22 , Robert Flack 65 , Victor V. Flambaum 66 , René Forsberg 67† , Mark Fromhold 68 , Naceur Gaaloul 42† , Barry M. Garraway 37 , Maria Georgousi 60 , Andrew Geraci 69 , Kurt Gibble 70 , Valerie Gibson 71 , Patrick Gill 72 , Gian F. Giudice 5 ,乔恩·戈德温 26 、奥利弗·古尔德 68 、奥列格·格拉乔夫 73 、彼得·W·格雷厄姆 44 、达里奥·格拉索 51 、保罗·F·格里恩 23 、克里斯汀·格林 74 、穆斯塔法·京多安 75 、拉特内什·K·古普塔 76 、马丁·海内尔特 71 、埃基姆·T·汉纳梅利 77 、莱昂尼·霍金斯 34 、奥雷利安·希斯 18 、维多利亚·A·亨德森 75 、瓦尔德马尔·赫尔 78 、斯文·赫尔曼 77 、托马斯·赫德 30 、理查德·霍布森 4† 、文森特·霍克 77 、杰森·M·霍根 44 、博迪尔·霍尔斯特 79 、迈克尔·霍林斯基 26 、乌尔夫·以色列森 59 、彼得·耶格利茨 80 、菲利普·杰泽81 , Gediminas Juzeli¯unas 82 , Rainer Kaltenbaek 83 , Jernej F. Kamenik 83 , Alex Kehagias 84 , Teodora Kirova 85 , Marton Kiss-Toth 86 , Sebastian Koke 36† , Shimon Kolkowitz 87 , Georgy Kornakov 88 , Tim Kovachy 69 , Markus Krutzik 75 , Mukesh Kumar 89 , Pradeep Kumar 90 , Claus Lämmerzahl 77 , Greg Landsberg 91 , Christophe Le Poncin-Lafitte 18 , David R. Leibrandt 92 , Thomas Lévèque 93† , Marek Lewicki 94 , Rui Li 42 , Anna Lipniacka 79 , Christian Lisdat 36† 、米娅·刘 95 、JL 洛佩兹-冈萨雷斯 96 、西娜·洛里亚尼 97 、约尔马·卢科 68 、朱塞佩·加埃塔诺·卢西亚诺 98 、Nathan Lundblad 99,Steve Maddox 86,MA Mahmoud 100,Azadeh Maleknejad 5,John March-Russell 30,Didier Massonnet 93,Christopher McCabe 7,Matthias Meister 28,Tadejemister 80,Mical 80 1,Gavin W. Morley 104,JurgenMüller42,Eamonn Murphy 35†,ÖzgürE。Musteğlu,Daniel O'She She。165 L oi 23,Judith Olson 107,Debapriya Pal 108,Dimitris G. Papazoglou 109,Elizabeth pasebet pasembou 4 Ki 111,Emanuele Pelucchi 112,Franck Pereira 18和Santos,Peter Achivski 17 13,114,
在六分钟的微重力时间段内,西蒙娜进行了一项实验,研究液态合金在微重力下的特殊反应,以增强汽车发动机轴承的先进材料,而 GECO 则记录了植物中钙与微重力的相互作用,以扩展我们对植物栽培的了解,例如确保太空中的食物来源。最后,凤凰 2 号更深入地研究了多个燃料液滴自燃中的液滴相互作用,这将有助于更好地了解液体喷雾燃烧,这种燃烧用于工业炉、锅炉、燃气轮机、柴油机、火花点火和火箭发动机。
致谢 作者谨向瑞典航天界表示感谢;感谢瑞典国家航天委员会的 Kerstin Fredga 教授、Per Tegnér、Per Nobinder、Silja Strömberg、Lennart Nordh 博士等;感谢 Göran Johansson、Olle Norberg、Claes-Göran Borg、Peter Möller、Hans Eckersand、Peter Sohtell、Per Zetterquist、Jörgen Hartnor、Tord Freygård 以及航天工业内众多其他太空爱好者。在瑞典国防界,我要感谢国防物资管理局的 Manuel Wik、Mats Lindhé、Lars Andersson、Thomas Ödman、Björn Jonsson 和 Curt Eidefeldt;感谢瑞典国防学院的 Bo Huldt 教授邀请我为战略年鉴做出贡献;瑞典武装部队的 Anders Eklund、Anders Frost、Urban Ivarsson、Lars Carlstein、Göran Tode、Rickard Nordenberg、Ulf Kurkiewicz 和 Peter Wivstam;以及瑞典国防无线电研究所的 Bo Lithner。法国外交部(对外关系部 - 文化关系总局)提供的奖学金使我得以在 1982 年至 1983 年期间在巴黎度过了三个学期,在巴黎大学学习理论物理学和天体物理学。我还要感谢林雪平技术大学的 Torsten Ericsson 教授在我担任巴黎助理技术专员期间的指导,以及 KTH 的 Anders Eliasson 博士。还要感谢爱因斯坦和薛定谔的前学生、意大利帕维亚大学的 Bruno Bertotti 教授,他认可我在日内瓦联合国“防止外空军备竞赛特设委员会”的工作,并邀请我作为第四届卡斯蒂利翁切洛国际会议“促进核裁军 - 防止核武器扩散”的发言人。关于我在日内瓦的工作
该博士职位是对EISCAT 3D基础设施项目和相关研究成果的战略支持的一部分。这里提供了两组项目:第一个链是基于对所谓的等离子体线的研究,这些信号可以通过不一致的散射技术来衡量,这是与“微型”等离子体物理学有关的主题。第二链涉及电离层与热层的耦合,并属于“宏”等离子体物理的领域。实际上,这两个链的项目都可以观察,基于模型或两者的组合。在项目期间,学生将有机会旅行和参观国外的合作者。
此次演习不仅是针对此类任务的强制性训练,也是对机组人员的一次精确演习。参加阅兵的飞机的目标是与 7 月 14 日巴黎空中阅兵的轴线和节奏保持一致,同时尊重所呈现的“画面”的时间顺序,这将在国庆节当天体现法国空军的价值。因此,奥尔良空军基地的跑道将模拟香榭丽舍大街轴线,以便在真实条件下进行训练。
欧洲需要制定强大的绿色工业政策,以从能源过渡中捕获经济,技术和就业价值。这应该利用欧洲的优势,例如对电动汽车,货车和卡车的强烈气候法规来创造投资确定性;以及引入绿色简化议程,以更快地批准一流的项目 - 例如更多的员工,更好的专业知识和数字化 - 而不会破坏环境保障措施。最重要的是,要有效的欧洲反应应该反映美国IRA的重点,简单性和可见性。在资源有限的情况下,应该在电池价值链(尤其是细胞,诸如阴极等组件以及将关键金属加工成的组件)上进行优先级排序,例如风和智能电网等可再生能源。没有强大的欧洲财务框架,欧洲将不会参加这些比赛(例如via the European Sovereignty Fund and reallocation of EU recovery and other funds in the short-term) that has sufficient money, focuses on production scale-up and is easy to access by companies.