氧空位在塑造金属氧化物的特性中起着至关重要的作用,例如催化,铁电性,磁性和超导性。尽管X射线光电子光谱(XPS)是一种健壮的工具,但准确的氧气空位定量仍然是一个挑战。XPS分析中的一个常见错误是将O 1 S光谱中的531 - 532 eV特征与氧空位相关联。这是不正确的,因为空的氧气位点不会发出光电子,因此不会产生直接的XPS光谱特征。为了解决这个问题,我们提出了三种通过间接特征通过XPS进行氧气空位分析的替代方法:(1)量化阳离子价状态变化,(2)通过归一化的氧气光谱强度和(3)评估FERMI能量从粘合En-Ergy中的电量移位来评估Fermi Ensightic Engy的Fermi Ensive变化。推荐的策略将促进氧气空位的精确XPS分析,从而促进未来的理解和操纵氧空位以进行先进材料开发的研究。
2差异几何形状的评论5 2.1歧管,光滑的地图和切线空间。。。。。。。。。。。。5 2.2张量代数(一个点的张量)。。。。。。。。。。。。。。。。。9 2.3张量。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。11 2.4 Lorentzian度量和Lorentzian歧管。。。。。。。。。12 2.4.1简短的Intermezzo:Lorentz内部产品。。。。。。。。12 2.4.2 Minkowski空间。。。。。。。。。。。。。。。。。。。。。。。15 2.4.3索引升高和降低。。。。。。。。。。。。。。。。。16 2.4.4更多术语。。。。。。。。。。。。。。。。。。。16 2.4.5曲线的长度。。。。。。。。。。。。。。。。。。。。。16 2.4.6时间方向。。。。。。。。。。。。。。。。。。。。。。。17 2.4.7洛伦兹指标的存在。。。。。。。。。。。。。。。18 2.5矢量场和流。。。。。。。。。。。。。。。。。。。。。。。。19 2.6连接。。。。。。。。。。。。。。。。。。。。。。。。。。。。21 2.7平行运输和测量学。。。。。。。。。。。。。。。。。。24 24 2.8扭转张量。。。。。。。。。。。。。。。。。。。。。。。。。。。。。25 2.9 Riemann曲率张量。。。。。。。。。。。。。。。。。。。。。。25 2.10 Levi-Civita连接。。。。。。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>25 2.11绑带调整器的对称性。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>26 2.12 ricci张量。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>27 2.13爱因斯坦方程。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>27 2.14异分析。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。。28 2.15指数地图和正常社区。。。。。。。。31 2.16正常坐标。。。。。。。。。。。。。。。。。。。。。。。。。。32 2.17本地洛伦兹几何形状。。。。。。。。。。。。。。。。。。。。。。。33
单原子催化剂(SAC)吸引了广泛的兴趣,以催化燃料电池和金属 - 空气电池中的氧气还原反应(ORR)。ever,具有高选择性和长期稳定性的SAC的发展是一个巨大的挑战。在这项工作中,碳空位修饰的Fe – N – C SAC(Fe H –N – C)实际上是通过微环境调制设计和合成的,可实现对活性位点的高效利用和电子结构的优化。Fe H –N-C催化剂表现出0.91 V的半波电势(E 1/2),足够的耐用性为100 000电压循环,具有29 mV E 1/2损失。密度功能理论(DFT)的计算证实,金属– N 4个位点周围的空缺可以减少OH*的吸附自由能,并阻碍金属中心的溶解,从而显着增强ORR动力学和稳定性。因此,在可充电锌 - 空气电池(ZABS)中,Fe H –N-C SAC在1200小时内提出了高功率密度和长期稳定性。这项工作不仅将通过金属– N 4个位点的合理调制来开发高度活跃和稳定的SAC,而且还可以深入了解电子结构的优化以增强电催化性能。
摘要:激光三维打印已成为基于熔体生长制备高性能Al 2 O 3 基共晶陶瓷的重要技术,但氧空位是该过程中不可避免的晶体缺陷,其形成机理和在沉积态陶瓷中的作用尚不清楚。本文采用激光3D打印制备Al 2 O 3 /GdAlO 3 /ZrO 2 三元共晶陶瓷,通过精心设计的退火实验揭示了氧空位的形成机理,并研究了氧空位对凝固态共晶陶瓷结构和力学性能的影响。揭示了氧空位的形成是由于氧原子通过空位迁移机制从氧化物陶瓷中转移到缺氧气氛中,此外,氧空位的存在对增材制造共晶陶瓷的晶体结构和微观结构没有明显影响。然而这些晶体缺陷的形成会在一定程度上改变陶瓷材料的化学键性质,从而影响沉积态共晶陶瓷的力学性能。研究发现,去除氧空位后,陶瓷材料的硬度降低了3.9%,断裂韧性提高了13.3%。该结果可为调控氧化物陶瓷材料的力学性能提供一种潜在的策略。关键词:氧化物共晶陶瓷;激光3D打印;氧空位;微观结构;力学性能
摘要:ZnO由于其高灵敏度和快速响应而对化学传感器进行了深入研究。在这里,我们提出了一种简单的方法,可以精确控制氧气空位含量,以提供商业ZnO纳米植物的丙酮感应性能的显着增强。H 2 O 2处理和热退火的组合可在ZnO纳米颗粒(NPS)上产生最佳的表面缺陷。在400的最佳工作温度下,在0.125 m H 2 O 2中,在0.125 m H 2 O 2中获得了〜27,562的最高响应,在400的最佳工作温度下,基于金属氧化物半管子(MOSS)的各种丙酮传感器中,在各种丙酮传感器中,该ZnO NP的最高响应。此外,第一原理的计算表明,在H 2 O 2处理的ZnO NP的表面上形成的预称o可以提供有利的吸附能,尤其是对于丙酮检测,由于丙酮分子和Zno表面的丙酮和预测o之间的carbonyl C原子之间的强烈双态粘结。我们的研究表明,通过H 2 O 2处理控制表面氧空位并在最佳温度下重新拨动是一种有效的方法,可以提高商业MOS材料的感应特性。关键字:气体传感器;丙酮;金属氧化物半导体(MOSS); ZnO纳米颗粒(NPS); H 2 O 2
f纳克技术大学,丹麦技术大学物理系,丹麦2820 G材料学院,太阳YAT-SEN大学,广州510275,H中国H中心微型/纳米电子中心(Novitas),电气和电子工程学院,电气和电子工程学院,Nanyang技术大学CNRS/NTU/THALES,UMI 3288,研究技术广场,637553,新加坡†相同的贡献 *相应的作者。Karen Chan:kchan@fysik.dtu.dk; pingqi gao:gaopq3@mail.sysu.edu.cn; Hong Li:ehongli@ntu.edu.sgKaren Chan:kchan@fysik.dtu.dk; pingqi gao:gaopq3@mail.sysu.edu.cn; Hong Li:ehongli@ntu.edu.sg