了解突触功能和神经回路动力学如何受到调节是神经科学的基石,因为这些过程对于信息传递、记忆形成和对环境变化的适应性反应至关重要。它们提供了对大脑如何处理信息、适应经验和对伤害做出反应的见解,例如通过学习中的突触可塑性、创伤后的神经再生和对环境变化做出反应的自适应电路重塑等机制。这些机制对于理解精神和神经系统疾病的病理生理学也至关重要。虽然已经取得了重大进展,例如高分辨率成像技术的开发和关键分子调节剂的识别,但对突触特性和神经回路在时间和空间维度上的精确调节仍然了解不足。解决这些挑战对于揭示大脑可塑性背后的分子机制和推进神经和精神疾病的新治疗方法至关重要。本研究主题重点关注调节突触功能和神经回路动力学的时空分子机制。它汇集了旨在弥补现有知识空白的各种研究。通过深入研究突触特性的分子基础及其动态变化,该研究主题提供了对突触功能调节和电路可塑性的重要见解,其更广泛的目标是增进我们对大脑可塑性及其对神经系统疾病的影响的理解。
摘要:由于它们在控制培养条件下对培养条件的卓越控制并与体内模型相比,由于它们在控制培养条件下的卓越控制并实现了实时观察,因此体外微血管模型的最新出现增强了组织工程中血管生成和血管形成的研究。然而,常规的二维(2D)观察和分析无法捕获三维(3D)形态动力学的异质性。为了克服这个问题,在本文中提出了一种新型的形态登记方法,用于通过将工程微血管的共聚焦显微镜与计算机视觉技术相结合,用于血管生成变形动力学的时空定量。使用微血管和周细胞的共培养系统,时空测量结果揭示了:(i)亲本血管和血管生成芽的不同变形模式以及生长/回归分区; (ii)周期定位和覆盖范围的时空变化; (iii)周细胞微使接触接触对局部缺口信号激活的增强作用,基质金属蛋白酶-1(MMP-1)的分布,血管生成动力学的异质性和形态成熟。该试验系统在血管生成过程中提供了共培养细胞的综合作用的特征,并在未来的有关血管形态发生的研究中实现了多模式数据的互动融合。
抽象目标本研究旨在评估莫桑比克霍乱发病率的社会经济和气候因素,以考虑空间和时间维度。设计了一项生态纵向回顾性研究,使用莫桑比克卫生部2000年至2018年的每月省级霍乱案件。霍乱案件与2000 - 2018年期间进行的莫桑比克人口和健康调查和气候数据有关的社会经济数据有关;相对湿度(RH),平均温度,降水和归一化差异植被指数(NDVI)。贝叶斯框架中的一个负二项式回归模型用于在调整时空协方差,环境因素的滞后效应和社会经济指标的同时对霍乱发病率进行建模。在莫桑比克设置11个省。在19年期间的结果,总共153 941例霍乱病例已通知莫桑比克的监视系统。与参考平均温度相比,霍乱的风险随每月平均温度高于24°C以上的平均温度增加。在19°C的平均温度下,霍乱风险在5-6个月的滞后较高。在较短的滞后1个月时,降水为223.3毫米,导致霍乱风险增加57%(相对风险,RR 1.57(95%CI 1.06至2.31))。霍乱风险在3个月时最大,每月NDVI为0.137(RR 1.220(95%CI 1.042至1.430)),而参考值为0.2。在54%的RH时,霍乱RR在4个月的时间为4个月时增加了62%(RR 1.620(95%CI 1.124至2.342))。我们发现无线电RR 0.29(95%CI 0.109至0.776)和手机RR RR 0.262(95%CI 0.097至0.711)的所有权与低霍乱风险显着相关。结论衍生的滞后模式可以在气候驱动的霍乱预警系统中提供适当的交货时间,这可能有助于预防和管理暴发。
对网络能力的不断升级的要求催化了太空层多路复用(SDM)技术的采用。随着多核光纤(MCF)制造的持续进展,基于MCF的SDM网络被定位为可行且有前途的解决方案,可在多维光学网络中实现更高的传输能力。然而,借助基于MCF的SDM网络提供的广泛网络资源带来了传统路由,调制,频谱和核心分配(RMSCA)方法的挑战,以实现适当的性能。本文提出了一种基于基于MCF的弹性光网(MCF-eons)的深钢筋学习(DRL)的RMSCA方法。在解决方案中,具有基本网络信息和碎片感知奖励函数的新型状态表示旨在指导代理学习有效的RMSCA策略。此外,我们采用了一种近端策略优化算法,该算法采用动作面膜来提高DRL代理的采样效率并加快培训过程。用两个不同的网络拓扑评估了所提出的算法的性能,其交通负荷不同,纤维具有不同数量的核心。结果证实,所提出的算法在将服务阻断概率降低约83%和51%方面优于启发式方法和最先进的基于DRL的RMSCA算法。此外,提出的算法可以应用于具有和没有核心切换功能的网络,并且具有与现实世界部署要求兼容的推理复杂性。
人类的发育是复杂而复杂的,其中细胞的位置,关键标记的表达和细胞 - 细胞相互作用有助于从不同细菌层的各种器官的发展以及身体轴的建立。因此,了解人类在时空方面的发展至关重要。空间和时间方面,这可以评估同一组织上的多个标记,从而对细胞和组织中的蛋白质表达进行关键见解。在本文的范围内,我们专注于使用多重成像在系统性和器官水平的人类发育中期的三个月中细胞类型的空间和单细胞分析。本文的论文I列出了前三个月发育中的人肺的空间和单细胞图。我们在概念后第6至13周使用了多重成像,该肺采用30 plex抗体面板,因此分析了近100万个细胞。我们提供了发育中的人肺的空间分辨细胞类型组成,重点是细胞类型的时空变化,例如免疫细胞,内皮细胞,淋巴细胞和增殖细胞态。第一篇论文的关键发现是,上皮中的增殖模式揭示了较小和较大的远端和近端气道的伸长率以及动脉周围某些免疫细胞的存在,突出了位置 - 功能关系。此外,本文代表了多路复用成像在发育中的人肺上的首次应用。纸II旨在通过关注免疫细胞和内皮细胞等细胞类型来系统地研究整个胚胎的人类发育。我们使用28个多重抗体面板从第3周到5分析了人类的整个胚胎组织。本文的关键发现是早在第4周就出现了肝免疫细胞,与其他免疫细胞相比,其标记表达谱的差异。在论文III中,我们提出了一种简单且灵活的开源方法,用于可视化数百个基因的原位表达式,该方法可以与其他方法(例如多路复用成像)结合使用。在论文IV中,我们探索了在细胞和亚细胞水平上发育中的人心脏的空间动力学。 总而言之,本文通过在各个阶段呈现发展器官和整个胚胎的空间图来阐明人类发育前三个月的时空变化。 目的是说明健康状态的特征,有助于更好地理解与先天性疾病相关的异常。 关键词:人类发育,器官发育,空间蛋白质组学,单细胞蛋白质组学,增殖,免疫系统在论文IV中,我们探索了在细胞和亚细胞水平上发育中的人心脏的空间动力学。总而言之,本文通过在各个阶段呈现发展器官和整个胚胎的空间图来阐明人类发育前三个月的时空变化。目的是说明健康状态的特征,有助于更好地理解与先天性疾病相关的异常。关键词:人类发育,器官发育,空间蛋白质组学,单细胞蛋白质组学,增殖,免疫系统
摘要:土壤水分是关键的环境变量。缺乏软件来促进非专家在估算和分析领域的土壤水分时。本研究提出了一个新的开源R包MHRSM,可用于生成基于机器学习的高分辨率(每天30至500 m,每天到每月)土壤水分图和在0-5 cm和0-1 m的连续美国所选地点的不确定性估计。该模型基于分位数随机森林算法,集成了原位土壤传感器,卫星来源的土地表面参数(植被,地形和土壤),以及基于卫星的表面和根Zone土壤水分的卫星模型。它还提供了用于生成土壤水分图的空间和时间分析的功能。提供了一个案例研究,以证明每天在70 ha农作物领域每天生成30 m至每周土壤水分图的功能,然后进行空间 - 周期分析。
时空分数 Fokas-Lenells (STFFL) 方程是电信和传输技术中使用的基本数学模型,阐明了光纤中非线性脉冲传播的复杂动力学。本研究采用 STFFL 方程框架内的 Sardar 子方程 (SSE) 方法探索未知领域,发现大量光孤子解 (OSS) 并对其分叉进行彻底分析。发现的 OSS 涵盖多种类型,包括亮暗孤子、周期孤子、多个亮暗孤子和各种其他类型,形成迷人的光谱。这些解揭示了亮暗孤子之间的复杂相互作用、复杂的周期序列、有节奏的呼吸、多个亮暗孤子的共存,以及扭结、反扭结和暗钟形孤子等有趣现象。这项探索建立在细致的文献综述基础之上,揭示了 STFFL 方程动态框架内以前未被发现的波动模式,大大扩展了理论理解,为创新应用铺平了道路。利用 2D、轮廓和 3D 图,我们说明了分数和时间参数对这些解决方案的影响。此外,全面的 2D、3D、轮廓和分叉分析图仔细研究了 STFFL 方程固有的非线性效应。使用汉密尔顿函数 (HF) 可以进行详细的相平面动力学分析,并辅以使用 Python 和 MAPLE 软件进行的模拟。发现的 OSS 解决方案的实际意义扩展到现实世界的物理事件,强调了 SSE 方案在解决时空非线性分数微分方程 (TSNLFDE) 中的有效性和适用性。因此,必须承认 SSE 技术是一种直接、高效和可靠的数值工具,可在非线性比较中阐明精确的结果。
量子点(QD)固体是有希望的光电材料;进一步提高其设备功能需要了解其能量传输机制。The commonly invoked near-field Förster reso- nance energy transfer (FRET) theory often underestimates the exciton hopping rate in QD solids, yet no consen- sus exists on the underlying cause.为了响应,我们使用了时间分辨超快刺激的发射消耗(STED)显微镜,这是STED的超快速转化,以在泰氏剂掺杂的核心/核心/钙含量的核/钙含量硫化物硫化物硫化物 - 硫化物 - 硫化物 - 壳QD超弹药中的超快转化。我们测量了由于激子在超晶格内采样异质的能量景观而导致的伴随时间分辨的激子衰减。通过单粒子发射光谱量化异质性。这套强大的多模式集合集合对激子传输的动力学蒙特卡洛模拟提供了足够的约束,以阐明一种复合运输机制,该机制包括近场和以前被忽视的远场排放/吸收性贡献。发现这种机制提供了一个急需的统一框架,可以在其中表征QD固体中的传输和设备设计的其他原理。
可以在空间和时间域中执行数学操作的时空光学计算设备可以提供前所未有的措施来构建高效且实时的信息处理系统。尤其重要的是要在紧凑的设计中实现综合功能,以更好地与电子组件整合。在这项工作中,我们基于非对称的跨表面的微波中的模拟时空区分剂实验表明,该微波在时空域中具有相位奇异性。我们表明,这种结构可以通过调整Spoof表面等离子体偏振子(SSPPS)的单向激发来引起理想的一阶区分和时间域中理想的一阶区分所需的时空传递函数。使用金属缝进行空间边缘检测,并通过不同宽度的高斯样时间脉冲检查设备的时间分化能力。我们进一步证实了此处证明的区别,即使有复杂的曲线,也可以检测到时空脉冲的急剧变化,理论上估计了空间和颞边检测的分辨率限制。我们还表明,通过此处实施的时空差异剂后的脉冲输入可以携带带有分形拓扑电荷的横向轨道角动量(OAM),从而进一步增加了信息数量。