图 2.1:典型双程粉状燃料锅炉厂示意图。5 图 2.2:为 640 MW 汽轮机供气的锅炉轮廓,显示了气体温度状态以及典型双程锅炉中经历的平均气体速度。8 图 2.3:南非 Hendrina 发电站的粉煤灰粒度分布。9 图 2.4:20µm 以下的电厂粉煤灰,显示了颗粒如何呈现完美的球形并且倾向于相互粘附(Lethabo 发电站)。10 图 2.5:显微照片显示了从最小颗粒到最大球体的尺寸范围,其尺寸范围都在 100µm 以下。形状畸形的球体通常是空心的,从最右边已经裂开的球体可以看出(Lethabo 发电站)。11 图 2.6:显微照片显示了尺寸范围 > 100µm 的颗粒。这里除了球体之外,还可以看到更多不规则颗粒,这些球体是半燃煤或焦炭的大颗粒(Lethabo 发电站)。11 图 3. 1:A/SI 304 不锈钢和碳钢的损耗与温度关系,注意两种材料损耗峰值的位置和大小 [BJ。23 图 3. 2:两种不同钢的损耗与温度关系,无论粒子撞击速度如何,它们的峰值损耗都发生在同一温度下 [51}。23 图 3. 3:侵蚀主导行为状态的定位以及向腐蚀主导行为的转变 [BJ。25 图 3.4:Ninham 等人使用的典型流化床装置 [51}。 28 图 3.5:侵蚀速率与涂层厚度的关系图,显示随着涂层厚度的增加,抗侵蚀性能增强 [73] 37 图 3.6:Shui 等人的图表清楚地说明了随着温度的增加,侵蚀速率呈上升趋势。 图 3.7:氮化和碳化试样的侵蚀速率与温度的关系图,显示温度对侵蚀速率的影响较弱 [78] 。 40 图 3.8:几种爆炸枪涂层的侵蚀速率与温度的关系图,显示侵蚀速率对温度的依赖性更强 [BO] 41 图 4.1:高温侵蚀磨损装置图。编号特征(1)-(7)与装置照片中的特征相对应。 46 图 4.2:腐蚀装置的照片:(1)气体火焰,(2)预热室,(3)腐蚀进料器,(4)加速管。 47 图 4.3:(a)测试部分,附接到室盖板上,以便于测试后快速取出样品。(b)测试部分插入的样品室(5)。48 图 4.4:冷却部分(6)与旋风分离器和排气管(7)相连。可以看出排气管如何有效增加旋风出口管的高度。 49 图 4.5:显示重要尺寸的旋风图。 64 图 4. 6:200°G 运行期间仪器上各个位置的温度与时间的关系图。 67 图 4. 7:500°G 运行中,仪器上不同位置的温度与时间的关系图。 68 图 4.8:几种不同空气供应压力下样品最终温度与气体调节器供应压力的关系。引用的空气压力是压力调节器上显示的单位,其中 1 bar= 1 个大气压以上,即 2.026x10 5 Nm· 2 • 69 图 4.9:106-125 µm SiC 颗粒在 2.5 kg .m· 通量下颗粒和气体速度与供应压力的关系
很难想象一个没有视觉的世界 - 眼睛无处不在。无可否认,视力的演变已成为地球生活历史上最深刻的事件之一。动物使用其视觉系统来找到食物,庇护所和伴侣,以及在其他无数行为中,可以增强其舒适性。另一方面,视觉也是由视觉引导的捕食者猎杀的众多猎物的敌人。对于此类猎物,避免被其潜在捕食者的视觉系统感知到与捕食者的视野一样重要。地球通过进化时间目睹了数十亿种猎物,如今,一些最引人注目的适应是捕食动物以捕食对选择的反应。“ camou-flig”是一个伞术,包括防止检测或识别的策略(Ruxton等人2018)。例如,许多猎物匹配背景的颜色和图案,即背景匹配(Endler 1978)。其他人的颜色模式破坏了身体的外观,即破坏性色(Thayer 1909)。还有其他与捕食者(即化妆舞会)不可食用的物体非常相似的物体(Cott 1940)。camou -fle年龄也可能涉及其他感觉系统,例如嗅觉,使化学伪装的猎物可以逃脱检测(Ruxton 2009)。Camou -flage吸引了几个世纪的生物学家和自然历史学家,并为达尔文和华莱士提供了令人信服的自然选择例子(Stevens and Merilaita 2009)。最近的研究(Wu等人1970)。虽然很容易理解有效的视觉迷恋年龄的有效性,但我们直到最近才开始阐明使凸轮型模式有效的复杂性,在什么条件下,在特定的camou型模式下是成功的,以及操纵视觉感知的机制。通过在过去的二十年中进行的研究,我们对凸轮的运作方式有了更深入,更广泛,更细微的了解。2024)‘作为埃利夫(Elife)出版的叶霍普斯(Leafhoppers)作为抗羊皮涂层的brochosomes是迷恋文学的令人兴奋的补充。研究的前提很简单。一个捕食者需要从其猎物中反映出的光,应选择猎物以最大程度地减少反射。由于许多猎物的自然背景包括具有低反射的物体,例如叶子,树皮和土壤,因此其体内的反射较低也可以最大程度地减少猎物与背景的对比,因此,其显着性。先前在许多昆虫中已经报道了抗反射涂料,包括蛾眼中的抗涂料(Bernhard等人Wu等人的研究。(2024)的重点是称为brochosomes的结构,在叶霍普珀(Cicadellidae)中广泛发现,这是一大群具有22,000多种物种的昆虫。brochosomes,第一次描述了1952年(Tulloch等人1952),是主要包括脂质和蛋白质的纳米结构。“ brochosom”这个名字来自希腊语(brochos)和身体(soma)的希腊语单词(Wang and Wong 2024)。分子系统发育分析表明,小册子在叶霍普斯的祖先中曾经演变。2024)。它们是空心的乳球形结构,通常直径约200-700 nm,表面形成常规的五边形和六边形凹陷(Rakitov 1999; Fure 1)。叶霍普斯在马尔皮亚小管中合成小册子,并以胶体悬浮液的形式通过后肠分泌(Rakitov 1996; Wang等人。通过称为“膏药”的行为,将brochosoms悬浮液应用于外皮上。膏药的行为随着物种而异。在大多数物种中,成年人用后腿从肛门上捡起一滴悬架,并将其应用于身体表面。流体干燥以留下小bro的沉积物(Rakitov 2002)。膏药后面是修饰,叶霍珀将其身体摩擦在其