量子传送[1,2]提供了一个平台,以共享纠缠成本传输未知的量子信息。它在各种量子信息处理任务中起着核心作用,例如宽带通信[3],量子计算[4-6]和秘密密钥蒸馏[7]。进一步的发展提供了可扩展量子网络的可行性[8],导致Quantunternet [9]。到目前为止,已经对基于光子系统的量子传送进行了实验证明并广泛分析了离散变量(DV)[10,11]和连续变量(CV)[12,13]系统。虽然DV系统的传送范围避免了成功的成功概率[14],但CV状态的传送会产生非单一的填充,因为它需要有限的挤压,这意味着完美的电信的有限能量[2] [2]。为了避免上述困难,使用相干态量子比特[15-19],辅助状态[20,21],挤压操作[22,23],多光顿Qubits [24]和混合Qubits [25,26]进行了各种尝试[15-19]。另一个想法是使用高斯资源来传达量表[27 - 29]。这种方法具有实用的优势,即高斯量子通道可以很容易地在实验室中产生,并且它们的特征相对简单[30,31]。另一方面,生成和分析非高斯通道的要求更高[32 - 35]。尽管较早地研究了对各种量子的传送,但通过简历通道对这些量子的比较性能的分析仍然是一个空旷的问题。在本文中,我们为此查询提供了部分答案。在这里,我们使用纠缠的高斯通道进行了严格研究不同类型的Qubit类型的传送。是特定的,我们专注于三种不同类型的Qubits:(a)双轨单光子量子量子[36],(b)A型杂交量子的杂交量子,这是单光子状态与连贯状态和(c)类型B型的单光子状态和(c)的近距离状态之间的杂交量子
新兴证据暗示上皮 - 间质转变转录因子ZEB1是造血干细胞(HSC)分化的关键调节剂。ZEB1是否调节HSC功能的长期维护仍然是一个空旷的问题。Using an inducible Mx-1-Cre mouse model that deletes condi- tional Zeb1 alleles in the adult hematopoietic system, we found that mice engineered to be de fi cient in Zeb1 for 32 weeks displayed expanded immunophenotypically de fi ned adult HSCs and multipotent progenitors associated with increased abundance of lineage-biased/balanced HSC subsets and augmented cell生存特征。在造血分化期间,持续的Zeb1损失增加了骨髓和脾脏中的B细胞,并减少了外周血中的单核细胞产生。在竞争性转移实验中,我们发现来自长期ZEB1缺失的成年小鼠的HSC在多列元素分化能力中显示出细胞自主缺陷。长期的Zeb1损失受干扰的髓质外造血作用,其特征是脾脏重量增加和脾细胞的矛盾降低,伴有HSC疲惫,谱系特异性缺陷,特异性缺陷,以及异常的,prelect的累积,诸如C-Kkit + CD16/32 + CD16/32 + Quertors的累积。ZEB1损失长达42周可以导致脾肿大和GR-1 + MAC-1 +细胞的积累,进一步支持这样一个观念,即Zeb1的长期表达抑制了PRELEUKEATIC活性。©2024 ISEH - 血液学和干细胞协会。由Elsevier Inc.出版因此,持续的Zeb1 de te骨会破坏体内HSC功能,并损害对耗尽造血的调节,对髓样肿瘤中Zeb1的肿瘤抑制功能有潜在的影响。这是CC下的开放式访问文章(http://creativecommons.org/licenses/4.0/)
作为房屋和健康的投资组合持有人,我很高兴向您介绍纽瓦克和舍伍德区议会的2023 - 2028年新住房策略。该策略将在帮助交付Newark和Sherwood社区计划的目标中发挥关键作用,即“通过我们在房东,开发人员和规划机构的角色来创造更多优质的房屋”。居住在该地区的人知道,这是一个生活和工作的好地方,也是一个可以投资的绝佳场所。我们的目标是使其成为所有居民都可以为可持续繁荣贡献并受益的地方。我们承认,住房是我们社区成功的关键,并且对居民的生活质量,健康和福祉至关重要。理事会为其在地区内提供和影响住房提供和服务方面的悠久历史而感到自豪。虽然建筑和管理理事会的住宅并向我们的租户提供相关服务是其中的关键要素,但理事会的住房角色进一步扩大。其住房角色包括计划提供可持续的住房增长,加强社区,介入私营部门住房,以确保房屋体面且安全地生活,并重新使用空旷的房屋,并支持我们最脆弱的群体以确保满足其住房需求。除了担任房东和地方规划局的监管角色外,该理事会还通过其全资开发公司Arkwood提供新的私人住宅。它旨在清楚地了解我们的优先事项以及我们为解决这些重要问题所做的工作。理事会认识到,如果没有广泛的利益相关者和合作伙伴的重要支持,就无法提供其围绕住房的大部分工作。我们强烈重视许多组织和个人的投入,这些组织和个人帮助我们提供居民需要的房屋,因此已与所有利益相关者进行了充分的咨询。住房策略提供了一个机会,可以将各种与住房相关的角色汇集在一起,这些角色由整个理事会的不同团队承担。最终,它规定了我们将如何继续为纽瓦克和舍伍德的所有居民提供高质量的住房和住房服务。议员Lee Brazier议员Lee Brazier
项目编号:12 申请编号:22/01322/MFUL 教区:Scampston 教区议会申请。类型:完整申请 主要申请人:Nigel Voaden 先生(Gravitricity Limited) 提案:保留先前开发的土地和现有的通往 B1258 Malton 路的车辆通道,以安装地下垂直竖井、地上模块化厂房和其他辅助重力能储存的开发项目,临时使用期限最长为 25 年,随后退役和恢复 地点:Third Energy UK Gas Ltd Malton Road West Knapton Malton North Yorkshire YO17 8JF 注册日期:2022 年 12 月 1 日 8/13 周 到期日:2023 年 3 月 2 日 整体到期日:2023 年 2 月 8 日 案件官员:Kevin Riley 分机:43269 咨询:约克郡水资源土地利用规划无异议国家公路无异议北约克郡公路推荐条件环境健康推荐条件 NYCC 考古学无异议 NYCC 生态学推荐条件树木和景观官员无异议 V皮克灵内部排水委员会 无异议 NYCC 通行权 无异议 经济发展局 未收到评论 健康与安全执行局 无异议 建筑保护官员 无异议 斯坎普斯顿教区议会 未收到评论 保护官员 无异议 陈述:未收到 地点:拟议的开发地点是前纳普顿发电站,位于空旷的乡村,距东纳普顿东北约 1 公里,距耶丁汉姆西南 2.2 公里。纳普顿燃气发电站于 1995 年安装,现已停止运行并正在拆除。可从西边的 B1258 进入该地点,该公路与南边的 A64 相连。该地点四周环绕着成熟茂密的树木。铁路线与北部边界平行。马道编号 25.81/8/1 大致呈南北走向,位于地点以西约 330 米处,并与地点通道相交。最近的住宅接收器位于 Ochre Farm、Difford Farm、Guild Farm、Mill Grange 和 Hartswood Farm,其中最近的是位于东北部的 Ochre Farm,距离约为 550 米。
a.任务。空军发展测试中心 (AFDTC) 位于佛罗里达州埃格林空军基地。AFDTC 的总体任务是规划、进行和评估美国和盟国的非核弹药、电子战、目标捕获、武器运载、基地入侵保护和支持系统的测试。b.物理描述。埃格林的陆地测试区占地 463,000 英亩,而其水上测试区覆盖墨西哥湾的 86,500 平方英里。埃格林空军基地测试综合体由许多单独的测试区组成,包括丛林条件、连绵起伏的丘陵、森林茂密的区域、空旷的平坦区域和水域。下面简要介绍 AFDTC 测试综合体的主要测试支持能力。(1) 电磁测试环境 (EMTE)。埃格林维护一个 EMTE,以支持开发和运营机构评估电磁战 (EMW) 设备、组件、系统和技术。EMTE 能够获取有关 EMW 设备性能的数据,以用于开发 EMW 战术和技术。EMTE 是一个跟踪和搜索雷达综合体,在不同频带和模式下运行,为 EMW 评估提供灵活的测试设施。所有跟踪雷达数据都传输到中央控制设施 (CCF),该设施能够接收、记录、处理并将 EMTE 数据重新传输到站点,以进行闭环实时 EMW 测试任务。(2) 通用站点。通用测试场地和综合设施为许多 AFDTC 测试任务职责提供通用仪器支持,而不是主要支持特定任务功能。• 测试场地 (TS) A-3、A-13、A-20、C-10 和 D-3 包含主要跟踪雷达系统,这些系统与其他支持仪器的集成程度非常复杂。测试场地 D-3 和 A-3 包含冗余 UHF 销毁发射器 (1 kW),用于远程弹药和车辆所需的飞行安全系统。• AFDTC 的主要遥测功能位于固定 TSs B-4A 和 D-3。货车和固定装置 (130 号建筑) 中提供其他设备。实时数据可以通过微波中继到中央控制设施 (CCF)。• TS B-4B 的地面监控设施 (GMF) 接收来自主动机载 ECM 设备的辐射信号。GMF 可以显示、测量和记录频谱功率特性。FCA 提供• TS A-6 的频率控制和分析 (FCA) 设施监测和记录 1 MHz 至 18 GHz 之间无线电频带的信号。
许多著名的研究工作[40,53,70]强调了准确的全身姿势估计的重要性,尤其是在涉及多个身体部位的行动成为信息交换的基本渠道的情况下。这尤其是在运动员训练[50],运动教练[42]和运动康复[11,61]等领域的应用。在这些情况下,从全身姿势中提取详细的运动学特征的能力对于这些交互式系统的有效操作至关重要。但是,在开放和现实世界中实施姿势捕获系统构成了巨大的挑战。这在很大程度上是由于目标运动在各个空间位置及其行动的多样性的不可预测性。此外,要考虑到幼稚用户的可接受性至关重要,尤其是当他们需要佩戴设备或留在特定区域以享受服务时。为了在用户舒适度和姿势估计精度之间达到平衡,我们寻求一种多功能,灵活和交互式的副驾驶,当他们在空旷的区域移动和行动时,可以积极了解用户的骨骼姿势。鉴于机器人技术的最新进展,采用视觉机器人为此目的成为有前途的解决方案。尽管如此,这在用视觉系统驱动机器人时构成了独特的挑战和问题。在这项探索性工作中,我们针对一个中心问题:如何使视觉机器人适应其位置和观点,以跨不同空间位置和动作类型进行最佳姿势估计?工作这对于基于视觉的系统至关重要,因为固定视角和用户的不同方向引起的遮挡可以显着降低准确性。解决这些问题时,本文介绍了Pepperpose,这是与类人生物机器人集成的以姿势估计为中心的机器人系统[6]。我们训练了机器人在移动目标时积极跟踪他们,并调整观点以改善姿势估计结果。因此,Pepperpose可以充当基本的动作感应平台,该平台消除了用户对戴其他设备或留在受限区域内的需求。我们在涉及30名参与者的现实世界中评估了该系统的性能。,我们通过利用从参与者的全身运动捕获诉讼中获得的同步高保真姿势来量化其姿势估计的精度,从而整合了惯性测量单元(IMUS),其轨道损失率以及向各种参与者行动中的最佳观察位置移动到最佳观察位置的速度。虽然这种机器人的当前成本可能无法承受,但我们强调了机器人姿势估计解决方案的潜力,该解决方案可能会提供更丰富的交互机会,对用户体验的影响很小。
bcs理论:探索其在高温超导体中的基本原理和挑战Bardeen-Cooper-Schrieffer(BCS)理论是凝聚态物理学的一个关键概念,为自1957年以来提供了超导性的显微镜解释。这种现象涉及在临界阈值以下的温度下进行电力无电的材料。BCS理论的关键在于库珀对的形成,尽管它们是自然的排斥,但它们是一对电子。在低温下,这种配对是通过声子介导的吸引力在超导体的晶格结构中促进的。基态和首先激发状态之间的能量差距在维持超导性中起着至关重要的作用。BCS理论在各个领域都具有深远的影响,包括使用MRI机,粒子加速器和量子计算的医学成像。它的影响超出了对核物理,天体物理学和中子星研究的超导性,赢得了创作者约翰·巴丁(John Bardeen),莱昂·库珀(Leon Cooper)和罗伯特·施里弗(Robert Schrieffer),1972年诺贝尔物理学奖。然而,BCS理论面临着在1980年代发现的高温超导体的挑战。这些材料在温度下表现出超导性能,远远高于BCS理论的预测,这表明了另一种机制。研究人员正在探索理论,例如BCS-BEC交叉和磁波动,以了解这些现象。非常规超导体由于其不同的对称特性而构成挑战。这导致了新的理论模型的发展,这些模型试图扩展或补充原始的BCS框架。超导性的应用导致了MRI和粒子加速器以外的技术进步,包括材料科学方面的重大发展。bcs理论是理解超导性的基本框架,尽管局限性地解释了高温和非常规的超导性,但仍对其性质和指导技术创新提供了深刻的见解。该理论将超导性描述为由cooper Pairs Pairs Pairs的核物理学引起的微观效应。Bardeen,Cooper和Schrieffer于1957年提出了BCS理论,于1972年在1972年获得了诺贝尔物理学奖。在1950年代中期,超导性的势头取得了进展,从1948年的1948年论文提出的一致性是由于现象学方程而提出的一致性。温度和压力具有显着的关系,温度受压力变化的强烈影响。虽然BCS理论被广泛接受为超导性的基本解释,但人们认为其他因素正在发挥作用,有助于这种现象。这些潜在的机制尚未完全理解,甚至可能在低温下控制某些材料的行为。在极低的温度下,费米表面附近的电子变得不稳定,从而形成了库珀对。在常规超导体中,这种吸引力通常归因于电子 - 武器相互作用。这种现象首先是由库珀观察到的,他证明了结合是在有吸引力的潜力的情况下发生的,无论其强度如何。相比之下,BCS理论仅要求潜在具有吸引力,而无需指定其起源。该框架将超导性解释为库珀对凝结产生的宏观效应,库珀对表现出了一些玻色子性能。在足够低的温度下,这些对可以形成大型的玻色网凝结物。通过使用Bogoliubov变换,尼古拉·博格洛博夫(Nikolay Bogolyubov)也独立地开发了超导性的概念。在许多情况下,通过与振动晶体晶格(Phonons)的相互作用,间接引起配对所需的电子之间的有吸引力的电子相互作用。此过程涉及一个吸引晶格中附近正电荷的电子,导致另一个电子移入较高的正电荷密度区域。随着这些电子的相关性,它们会形成高度集体的冷凝物。打破一对所需的能量与超导体内所有对中的所有对所需的能量密切相关,从而使外力更难破坏配对。这种集体行为对于理解超导性至关重要,因为它使电子能够抵抗外部影响并保持通过超导体的恒定流动。BCS理论从假设电子之间的相互作用的假设开始,这可以克服库仑排斥。高温超导性的行为很复杂,尚未完全理解。虽然这种吸引力通常是间接的,这是由电子晶格耦合引起的,但基本机制对于理解理论的结果并不是至关重要的。实际上,在没有这种相互作用的系统中观察到了库珀对,例如同质磁场下的费米亚的超速气体。bcs理论提供了金属中量子力学多体状态的近似,从而通过有吸引力的相互作用形成了库珀对。在正常状态下,电子独立移动;但是,在BCS状态下,由于吸引力的潜力降低,它们被绑定在一起。形式主义是基于波函数的变异ansatz,后来证明在对的密集极限中是精确的。尽管取得了重大进展,但稀释和致密政权之间的跨界仍然是一个空旷的问题,吸引了超低气体领域的关注。BCS理论的关键方面包括带隙,临界温度和同位素对超导性的影响的证据。测量值,例如临界温度附近的热容量的指数增加支持超导材料中能量带镜的存在。随着温度升高的结合能的降低表明电子与晶格之间的相互作用逐渐减弱。必须通过改变所有其他对的能量来打破一个能量的差距。与普通金属不同,在正常金属中,电子状态可以随着少量的添加能量而变化,当超导性停止时,该能隙在过渡温度下消失。BCS理论提供了表达式,以表明差距在费米水平上以吸引力和单粒子密度的强度生长。它还解释了当材料进入超导状态时状态的密度如何变化,而在费米水平上没有电子状态。在隧道实验和超导体的微波反射中,最直接观察到了这种能隙。BCS理论预测了能量差距对温度的依赖性,包括其在零温度下的通用值。在1950年,两个独立的小组在使用不同的汞同位素时发现了超导性的同位素效应。这一发现很重要,因为它揭示了同位素的选择可能会影响材料的电性能和晶格振动的频率。同位素效应表明,超导性与晶格的振动之间的联系,后来成为BCS理论的关键组成部分。由其中一个组进行的Little -Parks实验提供了早期的迹象,表明库珀配对在超导性中的重要性。通过对二吡啶镁等材料等材料的研究进一步探讨了这一原理,该材料被认为是BCS超导体。BCS理论发展中的关键里程碑包括John Bardeen,Leon Cooper和John Schrieffer的作品,后者发表了有关库珀对中电子超导性显微镜理论和电子结合能的论文。他们的工作为我们理解超导性及其与晶格振动的关系奠定了基础。后来的发现,例如Bednorz和Müller在1986年的发现,揭示了某些材料中高温超导性的潜力。最近,研究继续探索这种现象,并在2011年报告了值得注意的发现。BCS理论是理解超导性的基石,它源于W. A.和Parks R.D.在1962年发表的超导缸中量子周期性的观察。这一理论是由莱昂·库珀(Leon Cooper),约翰·巴丁(John Bardeen)和J.R. Schrieffer在1950年代后期的《绑定电子对的开创性论文and syproscopic理论》中进一步开发的。他们的工作为理解某些材料在比温度以下时如何表现出零电阻的基础奠定了基础。Schrieffer的书《超导性理论》(1964)以及其他文本,例如廷克汉姆(Tinkham)的“超导性概论”和de gennes的“金属和合金的超导性”,提供了对BCS理论的全面解释。该理论已被广泛接受,并且仍然是研究的主题,其应用在包括量子材料和超导体 - 绝缘体跃迁在内的各个领域。对该主题的著名作品的引用包括库珀的“堕落的费米气体中的绑定电子对”,巴尔丁的“超导性显微理论”和“超导性理论”。BCS理论已经进行了广泛的研究,许多研究人员为其发展做出了贡献。体育学提供了超导性的基础知识的介绍,而舞蹈类比为Bob Schrieffer所描述的BCS理论提供了创造性的解释。超导性的研究仍然是一个积极的研究领域,并持续努力理解和应用BCS理论中概述的原则。