本文部分内容由美国国家可再生能源实验室撰写,该实验室由可持续能源联盟有限责任公司为美国能源部 (DOE) 运营,合同编号为 DE-AC36-08GO28308。本文部分内容由美国高级研究计划局能源部 (ARPA-E) 设计智能促进大幅节能减排和实现全新、极具影响力的先进技术增强 (DIFFERENTIATE) 计划提供资金。本文表达的观点不一定代表美国能源部或美国政府的观点。美国政府保留;且出版商在接受发表本文时,即承认美国政府保留非独占、已付费、不可撤销的全球许可,可以出于美国政府目的出版或复制本文的已出版形式,或允许他人这样做。
流体特性和流量特性 - 静态和动态压力;流体流的类型 - 层流,过渡和湍流,粘性和无粘性;质量连续性,能量方程,动量(Euler和Navier-Stokes)方程及其应用;剪切边界流 - 边界层,管流;自由剪切流 - 喷气机,唤醒,混合层;外部和内部不可压缩和可压缩流;空气动力 - 升力,阻力 - 压力,皮肤摩擦,诱发拖动;空气动力学轴系统和力矩;连接和分离的流量,压力系数,攻击角度;地面汽车空气动力学:地面效应,人体通道,扩散剂,扰流板,其他典型的空气动力学案例,来自现实生活中的案例研究;推进系统 - 螺旋桨,涡轮喷气机,涡轮扇,公羊和板球杆;可再生能源的机器 - 风力涡轮机,波浪机和潮汐力;计算流体动力学(CFD)应用于内部和外部流,均用于不可压缩和可压缩流。
摘要:屋顶压力统计数据是 ASCE 风荷载设计条款的基础,通常通过边界层 (BL) 风洞测试获得。然而,人们已经认识到一个长期存在的问题——不同 BL 风洞报告的结果不一致。请注意,这些 BL 风洞测试往往遵循标准设置,使用既定的仪器和设备测量缩小的建筑模型上的流量和压力,并使用通用方法处理数据。导致报告的压力统计数据存在不可忽略的差异的主要因素是什么?考虑到风洞数据在作为 CFD 工具验证的参考案例方面的作用越来越大,必须严格评估现有的风洞压力数据,并深入了解风工程界的这一突出问题。这项工作将重点关注 NIST 和 TPU 气动数据库中存档的模拟 BL 流入的孤立低层建筑模型的选定案例的屋顶压力数据的时间序列。结果包括瞬时压力、平均和 RMS 表面压力的直方图,以及由 Gumbel 模型根据屋顶上的压力抽头位置和风向估计的峰值压力。我们希望找出风洞测试中导致结果差异的主要因素,并帮助解决这一问题。关键词:风洞测试、数据不一致、NIST 气动数据库、TPU 气动数据库 1.简介 风洞测试创建了一个受控的、理想的、模拟的边界层流动条件,并使用缩放的建筑模型来重现感兴趣的风结构相互作用。对于风荷载试验,主要测量量包括局部表面压力和/或总力和力矩,以及模型所受的流入特性(风速剖面、湍流水平和频谱)。边界层风洞试验极大地促进了风荷载设计。然而,风洞试验结果的不一致性一直是风工程界公认的长期问题。例如,对来自六个著名风洞实验室的风压数据的变异性进行了比较,得出结果的变异系数在 10% 到 40% 之间(Fritz 等人,2008 年)。风洞结果的差异可以归因于风荷载测量和估计的多个方面。风洞可能受到实现 ABL 风的全光谱的能力限制(由于物理尺寸和缺少粗糙度细节而切断大尺度和小尺度的湍流结构)、相对较低的 Re 数范围以及与特定设备相关的不确定性。就低层建筑模型而言,高度与边界层气动粗糙度(H/z 0 Jensen 数)的比率在实用上非常具有挑战性。建筑特征和表面纹理难以建模,这可能会极大地影响表面的关键流动分离、重新附着和涡流发展
• 美国的研究成果由美国国家可再生能源实验室共同撰写,该实验室由可持续能源联盟有限责任公司运营,为美国能源部 (DOE) 服务,合同编号为 DE- AC36-08GO28308。资金由美国能源部能源效率和可再生能源办公室风能技术办公室提供。文章中表达的观点不一定代表美国能源部或美国政府的观点。美国政府保留,而出版商在接受文章发表时,承认美国政府保留非独占、已付清、不可撤销的全球许可,可以出于美国政府目的出版或复制本作品的已出版形式,或允许他人这样做。本研究的一部分是使用由美国能源部能源效率和可再生能源办公室赞助的位于国家可再生能源实验室的计算资源进行的。
SUV多年来一直处于流行状态,这阻碍了简化样式而不是受益。哪些辅助系统可用于改善阻力系数?这也适用于面板/盒子型货车吗?我们想问:“为什么要妥协?”主动系统的主要好处是,如果您能够在车辆沿着道路上行驶时,车辆的样式(通常是能力)可以与空气动力学的效率分离。这正是我们对主动空气动力学系统的作用。就像您提到的那样,当汽车固定时,车辆仍然可以具有静止的提示,但在某些驾驶条件下转移到了更具空气的纳米式供应。所有车辆都可以从主动空气动力学中受益。
摘要 — 本研究描述了实验空气动力学研究中心 (CPAERO) 最近的活动,包括致力于发展用于解决基础和工业流动问题的实验和数值空气动力学和气动声学技术能力的所有努力。尽管巴西政府在过去十年中资源投入较少且机构政策出现分歧,但在过去的 05 年里,已经能够建造一个中型低速亚音速风洞,并购买、设计和建造各种用于实验室和露天研究的设备。主要活动是在航空、汽车和风能等替代能源领域开展的。但是,流体结构相互作用、无人机噪声以及风洞和风速传感器校准等领域的其他应用正在开发中。为了支持实验研究,特别关注计算空气动力学,通过使用开源代码来设计翼型、机翼和计算流体动力学 (CFD) 中更复杂的流体模拟。与当地和国家公司的接口正在不断增加,以及与其他大学和研究中心的研究合作伙伴。本文介绍了一些非常规飞机分析、商用车(如轿车和皮卡的空气动力学)、不同纵横比的圆柱体上的流动以及有限高度表面安装圆柱体的实验和数值数据的结果。提供了用于设计小型水平轴风力涡轮机 (HAWT) 仿生叶片的最新方法和新方法。还将气动声学数值数据与自由流和横流条件下亚音速喷气机的实验数据进行了比较,显示了 CPAERO 工具和能力的灵活性。
摘要 — 本研究描述了实验空气动力学研究中心 (CPAERO) 最近的活动,包括致力于发展用于解决基础和工业流动问题的实验和数值空气动力学和气动声学技术能力的所有努力。尽管巴西政府在过去十年中资源投入较少且机构政策出现分歧,但在过去的 5 年里,已经能够建造一个中型低速亚音速风洞,并购买、设计和建造各种用于实验室和露天研究的设备。主要活动是在航空、汽车和风能等替代能源领域开展的。但是,流体结构相互作用、无人机噪声以及风洞和风速传感器校准等领域的其他应用正在开发中。为了支持实验研究,特别关注计算空气动力学,通过使用开源代码来设计翼型、机翼和计算流体动力学 (CFD) 中更复杂的流体模拟。与本地和国家公司的接口正在不断增加,以及与其他大学和研究中心的研究合作伙伴。本文介绍了一些非常规飞机分析、商用车(如轿车和皮卡的空气动力学)、不同纵横比的圆柱体上的流动以及有限高度表面安装圆柱体的实验和数值数据的结果。提供了用于设计小型水平轴风力涡轮机 (HAWT) 仿生叶片的最新方法和新方法。还将气动声学数值数据与自由流和横流条件下亚音速喷气机的实验数据进行了比较,显示了 CPAERO 工具和能力的灵活性。
1因斯布鲁克大学,奥地利6020 Innsbruck; rainer.p fluger@uibk.ac.at 2 Eurac Research,39100 Bozen,意大利; Alexandra.troi@eurac.edu(A.T。); daniel.herrera@eurac.edu(d.h.-a.) 3丹麦哥本哈根SV 2450的Aalborg University建筑环境系; ket@build.aau.dk(k.e.t。 ); jro@build.aau.dk(J.R.)4 Izmir理工学院,35430 - Izmir,土耳其; zeynepdurmus@iyte.edu.tr(Z.D.A. ); guldengokcen@iyte.edu.tr(G.G.A.) 5 Arch+更多ZT GmbH,9220 Velden AmWörthersee,奥地利; Arch@archmore.cc 6 Cerema,BPE Project团队,46,rue stthébald,F-38080 L'Isle D'Abeau,法国; Gaelle.guyot@cerema.fr 7 Savoie Mont Blanc,CNRS,Locie,73000ChambéRy,法国8德雷克塞尔大学,费城,宾夕法尼亚州19104,美国; dhc38@drexel.edu *通信:Alexander.rieser@uibk.ac.at;电话。 : +43-512-507-636211因斯布鲁克大学,奥地利6020 Innsbruck; rainer.p fluger@uibk.ac.at 2 Eurac Research,39100 Bozen,意大利; Alexandra.troi@eurac.edu(A.T。); daniel.herrera@eurac.edu(d.h.-a.)3丹麦哥本哈根SV 2450的Aalborg University建筑环境系; ket@build.aau.dk(k.e.t。 ); jro@build.aau.dk(J.R.)4 Izmir理工学院,35430 - Izmir,土耳其; zeynepdurmus@iyte.edu.tr(Z.D.A. ); guldengokcen@iyte.edu.tr(G.G.A.) 5 Arch+更多ZT GmbH,9220 Velden AmWörthersee,奥地利; Arch@archmore.cc 6 Cerema,BPE Project团队,46,rue stthébald,F-38080 L'Isle D'Abeau,法国; Gaelle.guyot@cerema.fr 7 Savoie Mont Blanc,CNRS,Locie,73000ChambéRy,法国8德雷克塞尔大学,费城,宾夕法尼亚州19104,美国; dhc38@drexel.edu *通信:Alexander.rieser@uibk.ac.at;电话。 : +43-512-507-636213丹麦哥本哈根SV 2450的Aalborg University建筑环境系; ket@build.aau.dk(k.e.t。); jro@build.aau.dk(J.R.)4 Izmir理工学院,35430 - Izmir,土耳其; zeynepdurmus@iyte.edu.tr(Z.D.A.); guldengokcen@iyte.edu.tr(G.G.A.)5 Arch+更多ZT GmbH,9220 Velden AmWörthersee,奥地利; Arch@archmore.cc 6 Cerema,BPE Project团队,46,rue stthébald,F-38080 L'Isle D'Abeau,法国; Gaelle.guyot@cerema.fr 7 Savoie Mont Blanc,CNRS,Locie,73000ChambéRy,法国8德雷克塞尔大学,费城,宾夕法尼亚州19104,美国; dhc38@drexel.edu *通信:Alexander.rieser@uibk.ac.at;电话。: +43-512-507-63621
轨道空气动力学研究卫星 (SOAR) 是一项立方体卫星任务,预计于 2021 年发射,用于研究极低地球轨道 (VLEO) 上不同材料与大气流动状态之间的相互作用。提高对这些高度的气体-表面相互作用的了解以及识别可以最大限度减少阻力或改善空气动力学控制的新型材料,对于设计未来可以在低高度轨道运行的航天器非常重要。这类卫星可能更小、开发成本更低,或者可以提供改进的地球观测数据或通信链路预算和延迟。为了实现这些目标,SOAR 具有两种有效载荷:i) 一组可操纵的翼片,能够将不同的材料或表面处理暴露给具有不同入射角的迎面而来的气流,同时还提供可变的几何形状以研究空气稳定性和空气动力学控制;以及 ii) 具有飞行时间能力的离子和中性质谱仪,可以精确测量原位流动成分、密度和速度。利用精确的轨道和姿态确定信息以及测得的大气流动特性,可以研究卫星在轨道上受到的力和扭矩,并计算出气动系数的估计值。本文介绍了 SOAR 任务的科学概念和设计。描述了使用最小二乘轨道确定和自由参数拟合过程从测得的轨道、姿态和原位大气数据中恢复气动系数的方法,并估计了解析的气动系数的实验不确定度。结果表明,卫星设计和实验方法的结合能够清楚地说明阻力和升力系数随不同表面入射角的变化。阻力系数测量的最低不确定度位于约 300 公里处,而升力系数测量的不确定性随着轨道高度降低至 200 公里而提高。
是谁做出了这些重要的发现,从而形成了我们今天所知的现代空气动力学?首先,我们要感谢丹尼尔·伯努利 (1700-1782),他是艾萨克·牛顿的同时代人,也是伯努利的同事,莱昂哈德·欧拉 (1707-1783) 和乔治·凯莱爵士 (1773-1857) 被一些权威人士视为重于空气的飞行空气动力学之父。许多其他伟人也参与了空气动力学的发展,特别是在 20 世纪上半叶。这些名字可以归功于少数几个 - 比如阿道夫·布塞曼教授、尼古拉·尤可夫斯基、西奥多·冯·卡门、马丁·库塔、路德维希·普朗特、迪特里希·库赫曼博士和理查德·惠特科姆。这个名单并不完整,本书中还提到了其他几个名字;不过,我向那些没有被提及的人表示歉意,他们也为空气动力学做出了巨大贡献。这些早期研究大部分起源于欧洲大陆——瑞士、德国、俄罗斯和英国,其他国家也有少量研究。美国大型 NACA/NASA 研究中心始于 20 世纪,它们为空气动力学研究做出了巨大贡献,至今仍在做出贡献。