进行了研究以分析菠萝蜜种子粉的物理化学特性。菠萝蜜种子粉从50°C,60°C和70°C的干燥温度制备。在50 o C,60 O C和70 o C的对流热空气烘干机中干燥。干燥机内部的空气速度为2-3 m/s,干燥过程在38小时,27小时,27小时和19hrs的时间内完成,在50°C,60°C和70°C下干燥产品。干燥速率随空气温度的升高而增加。将菠萝蜜种子的实验干燥数据应用于三种水分比模型,即牛顿,佩奇和亨德森和帕比斯。在所有模型中,发现亨德森和帕比斯模型是解释菠萝蜜种子干燥特征的最佳方法。有效的水分扩散率从2.174×10 -8,3.565×10 -8和6.261×10 -8及其在研究温度范围内不等,激活能量为46.646 kJ/mol,用于杆果种子。菠萝蜜种子粉中含有6.33至7.81%的水分,蛋白质12.07至7.17%,脂肪1.75至1.25%,纤维2.32至2.75%碳水化合物75.32至80.52%,灰烬2.21至1.1%。记录了面粉的平均吸水能力(2.374ml/ g),油吸收能力(2.081ml/ g)。
前几天晚上,我和妻子 Sita 就她测量客厅长度的方法的准确性发生了激烈的争论。她不想下楼去找卷尺,于是在地上躺了四次,用猫玩具标记她的脚/头落在地板上的位置。考虑到各种变量,她的方法不准确,她无视我的抗议:她身高 5 英尺半英寸,猫玩具宽约 2 英寸。好吧,在我拿到卷尺后,结果发现她测量的 20 英尺只差了一英寸半——误差率为 0.625%±。我完全赞成跳出思维定势,利用手头上的一切来回答一个棘手的问题,但说到测量,我无法摆脱计量学家的思维定势……她的方法让我很不舒服,让我怒不可遏。但是,为了世界和平,我不得不对她的成果表示赞赏。我在这个行业工作了 15 年,我知道如果我们增加 ±1 Sita 的分辨率贡献者,我们就能看出我对她的方法有多么不确定。但我确实喜欢计量学,因为它影响一切;我可以将我作为计量学家的职业生涯与几乎所有职业联系起来。多样性令人惊叹……只需看看我们在本期中的论文即可。大多数人将 X 射线与一两根骨折联系在一起,但很少有人知道使用另一种需要计量的技术来窥视皮肤下方需要什么。在本期中,我们介绍了“学习将计量原理应用于 500 eV 至 110 keV 能量范围内的 X 射线强度测量”,这是一篇由 National Security Technologies LLC 撰写的论文。加利福尼亚州费尔菲尔德的 Bryza 风实验室总裁 Rachael Coquilla 撰写了她关于“空气速度校准质量”的文章,重点介绍了风洞是否符合风传感器校准测试的要求。只需一点风洞计量就能影响从建筑物到喷气式飞机等所有事物的设计和工程。在本期《计量学入门》文章中,Ohm-Labs 的 Jay Klevens 就“校准直流分流器:技术和不确定性”贡献了自己的专业知识。这篇文章对于计量学入门来说可能有点高级,但电流分流器校准并不简单。随着当今行业的发展以及向 17025 和 z540.3 的推进,了解造成不确定性的因素对于我们的测量至关重要。我希望能在加利福尼亚州萨克拉门托的 NCSLI 大会(展位 623)或在阿纳海姆的 AUTOTESTCON 楼上见到大家,所以请务必前来并告诉我们我们的进展以及您希望在杂志中看到什么。
首先,飞行员认为该物体是某种无人机,然后,也许是一个铝制的派对气球(由于其轻闪烁),然后是某种盒子风筝,但其前进速度太高了,对于后两个。起初,乘客认为他们看到阳光从车道上“非常快”的车道(Hervey Street Road?)闪光是间歇性的(不规则),多色(“绿色,一些红色”),“非常生动的”,不像(阳光)的反射。此时,太阳在飞机上方和后面。那天在奥尔巴尼的天气温暖干燥,露点范围为54至58度。通常以6英里 /小时的速度从北部发出风,但在1800小时以南距南方4英里 /小时。积云云碱基的范围从(估计)4,500到4,700英尺。可见性为五十英里。本报告基于飞行员通过电子邮件(通过网站)提供给Narcap的未经请求的信息,以及作者于2015年8月13日至14日进行的电话采访,飞行员回答了许多问题。对乘客的电话采访于2015年8月14日举行。两个证人都非常愿意直接(用航空相关的语言)直接提供帮助和回答,而没有任何逃避。报告飞行员向联邦航空管理局提出了FOIA请求,并于2015年8月21日被分配给佐治亚州亚特兰大办事处的空中交通组织(ESA-AJT)。|在撰写本文时,他没有收到这些数据。他要求:来自所有天线的二级和主要雷达数据,该数据将涵盖该(NE Greene,纽约州)地区,在活动前三十分钟(15:15)到活动结束前三十分钟,在奥尔巴尼机场的塔楼日志和奥尔巴尼塔的录音(16:15)。滑翔机信息这款德语设计和建造的滑翔机长26.8英尺,翼跨度为57.4英尺。其最大飞行重量为1,279磅,摊位转速= 111 mph;最大红线速度= 155 mph;正常飞行速度范围= 48至105 mph;最低着陆速度= 59 mph;和V(失速)速度(没有飞机)= 47 mph的两座模型。它仅用于白天VFR飞行。图9显示了各种空气速度(结)和四个不同的银行角度的圆形半径(脚)。此曲线适用于32 kt的滑翔机。失速速度少于Grob 103的速度,但提供了最小转弯半径的估计值。
1 2 3 4 MD-82 商用客机头等舱的精确高分辨率边界条件和流场 6 7 刘伟 1 , 温继洲 1 , 赵江月 1 , 尹伟友 1 , 沈晨 1 , 赖代一 1 , 林朝欣 8 2 , 刘俊杰 1 , 孙河江 1,* 陈庆艳 1,3 9 10 1 天津大学环境科学与工程学院,天津 300072,11 中国 12 2 波音民用飞机环境控制系统,华盛顿州埃弗里特 98203,美国 13 3 普渡大学机械工程学院,印第安纳州西拉斐特 47907,美国 14 15 * 电子邮件地址:sunhe@tju.edu.cn 16 17 摘要 18 19商用客机客舱对于创造热舒适和健康的客舱环境至关重要。除了客舱几何形状和家具外,流场还取决于扩散器处的热流体边界条件。为了研究客舱内的流场,本文介绍了一种获取客舱几何形状、扩散器边界条件和流场的程序。本研究使用激光跟踪系统和逆向工程生成了 MD-82 飞机客舱的数字模型。尽管该系统的测量误差很小,但仍然需要近似和假设以减少工作量和数据量。几何模型还可用于轻松计算空间体积。采用热球风速计 (HSA) 和超声波风速计 (UA) 组合来获取扩散器处的速度大小、速度方向和湍流强度。测量结果表明,实际客舱内的流动边界条件相当复杂,速度大小、速度方向和湍流强度在不同缝隙开口之间差异很大。还使用 UA 测量 20 Hz 下的三维空气速度,这也可用于确定湍流强度。由于流动的不稳定性,应至少测量 4 分钟才能获得准确的平均速度和湍流信息。结果发现,流场速度低、湍流强度高。这项研究为验证计算流体力学 (CFD) 模型提供了高质量数据,包括客舱几何形状、扩散器边界条件和 MD-82 商用客机头等舱的高分辨率流场。 关键词:客机客舱;客舱几何形状;流场;实验;扩散器 41 42 1. 引言 43 44 商用客机客舱中的空气分布用于维持乘客和机组人员的热舒适度 45 和空气质量。这些空气分布可以控制空气温度和 46 空气速度场,并可以稀释气体和颗粒浓度。尽管 47 航空航天工业在过去 48 十年中已经改善了飞机客舱的热舒适度和卫生状况(Space et al.,2000),空气分配系统需要进一步改进。49
1 2 3 4 MD-82 商用客机头等舱的精确高分辨率边界条件和流场 6 7 刘伟 1 , 温继洲 1 , 赵江月 1 , 尹伟友 1 , 沈晨 1 , 赖代一 1 , 林朝欣 8 2 , 刘俊杰 1 , 孙河江 1,* 陈庆艳 1,3 9 10 1 天津大学环境科学与工程学院,天津 300072,11 中国 12 2 波音民用飞机环境控制系统,华盛顿州埃弗里特 98203,美国 13 3 普渡大学机械工程学院,印第安纳州西拉斐特 47907,美国 14 15 * 电子邮件地址:sunhe@tju.edu.cn 16 17 摘要 18 19商用客机客舱对于创造热舒适和健康的客舱环境至关重要。除了客舱几何形状和家具外,流场还取决于扩散器处的热流体边界条件。为了研究客舱内的流场,本文介绍了一种获取客舱几何形状、扩散器边界条件和流场的程序。本研究使用激光跟踪系统和逆向工程生成了 MD-82 飞机客舱的数字模型。尽管该系统的测量误差很小,但仍然需要近似和假设以减少工作量和数据量。几何模型还可用于轻松计算空间体积。采用热球风速计 (HSA) 和超声波风速计 (UA) 组合来获取扩散器处的速度大小、速度方向和湍流强度。测量结果表明,实际客舱内的流动边界条件相当复杂,速度大小、速度方向和湍流强度在不同缝隙开口之间差异很大。还使用 UA 测量 20 Hz 下的三维空气速度,这也可用于确定湍流强度。由于流动的不稳定性,应至少测量 4 分钟才能获得准确的平均速度和湍流信息。结果发现,流场速度低、湍流强度高。这项研究为验证计算流体力学 (CFD) 模型提供了高质量数据,包括客舱几何形状、扩散器边界条件和 MD-82 商用客机头等舱的高分辨率流场。 关键词:客机客舱;客舱几何形状;流场;实验;扩散器 41 42 1. 引言 43 44 商用客机客舱中的空气分布用于维持乘客和机组人员的热舒适度 45 和空气质量。这些空气分布可以控制空气温度和 46 空气速度场,并可以稀释气体和颗粒浓度。尽管 47 航空航天工业在过去 48 十年中已经改善了飞机客舱的热舒适度和卫生状况(Space et al.,2000),空气分配系统需要进一步改进。49
1 2 3 4 MD-82 商用客机头等舱的精确高分辨率边界条件和流场 6 7 刘伟 1 , 温继洲 1 , 赵江月 1 , 尹伟友 1 , 沈晨 1 , 赖代一 1 , 林朝欣 8 2 , 刘俊杰 1 , 孙河江 1,* 陈庆艳 1,3 9 10 1 天津大学环境科学与工程学院,天津 300072,11 中国 12 2 波音民用飞机环境控制系统,华盛顿州埃弗里特 98203,美国 13 3 普渡大学机械工程学院,印第安纳州西拉斐特 47907,美国 14 15 * 电子邮件地址:sunhe@tju.edu.cn 16 17 摘要 18 19商用客机客舱对于创造热舒适和健康的客舱环境至关重要。除了客舱几何形状和家具外,流场还取决于扩散器处的热流体边界条件。为了研究客舱内的流场,本文介绍了一种获取客舱几何形状、扩散器边界条件和流场的程序。本研究使用激光跟踪系统和逆向工程生成了 MD-82 飞机客舱的数字模型。尽管该系统的测量误差很小,但仍然需要近似和假设以减少工作量和数据量。几何模型还可用于轻松计算空间体积。采用热球风速计 (HSA) 和超声波风速计 (UA) 组合来获取扩散器处的速度大小、速度方向和湍流强度。测量结果表明,实际客舱内的流动边界条件相当复杂,速度大小、速度方向和湍流强度在不同缝隙开口之间差异很大。还使用 UA 测量 20 Hz 下的三维空气速度,这也可用于确定湍流强度。由于流动的不稳定性,应至少测量 4 分钟才能获得准确的平均速度和湍流信息。结果发现,流场速度低、湍流强度高。这项研究为验证计算流体力学 (CFD) 模型提供了高质量数据,包括客舱几何形状、扩散器边界条件和 MD-82 商用客机头等舱的高分辨率流场。 关键词:客机客舱;客舱几何形状;流场;实验;扩散器 41 42 1. 引言 43 44 商用客机客舱中的空气分布用于维持乘客和机组人员的热舒适度 45 和空气质量。这些空气分布可以控制空气温度和 46 空气速度场,并可以稀释气体和颗粒浓度。尽管 47 航空航天工业在过去 48 十年中已经改善了飞机客舱的热舒适度和卫生状况(Space et al.,2000),空气分配系统需要进一步改进。49
1 2 3 4 MD-82 商用客机头等舱的精确高分辨率边界条件和流场 6 7 刘伟 1 , 温继洲 1 , 赵江月 1 , 尹伟友 1 , 沈晨 1 , 赖代一 1 , 林朝欣 8 2 , 刘俊杰 1 , 孙河江 1,* 陈庆艳 1,3 9 10 1 天津大学环境科学与工程学院,天津 300072,11 中国 12 2 波音民用飞机环境控制系统,华盛顿州埃弗里特 98203,美国 13 3 普渡大学机械工程学院,印第安纳州西拉斐特 47907,美国 14 15 * 电子邮件地址:sunhe@tju.edu.cn 16 17 摘要 18 19商用客机客舱对于创造热舒适和健康的客舱环境至关重要。除了客舱几何形状和家具外,流场还取决于扩散器处的热流体边界条件。为了研究客舱内的流场,本文介绍了一种获取客舱几何形状、扩散器边界条件和流场的程序。本研究使用激光跟踪系统和逆向工程生成了 MD-82 飞机客舱的数字模型。尽管该系统的测量误差很小,但仍然需要近似和假设以减少工作量和数据量。几何模型还可用于轻松计算空间体积。采用热球风速计 (HSA) 和超声波风速计 (UA) 组合来获取扩散器处的速度大小、速度方向和湍流强度。测量结果表明,实际客舱内的流动边界条件相当复杂,速度大小、速度方向和湍流强度在不同缝隙开口之间差异很大。还使用 UA 测量 20 Hz 下的三维空气速度,这也可用于确定湍流强度。由于流动的不稳定性,应至少测量 4 分钟才能获得准确的平均速度和湍流信息。结果发现,流场速度低、湍流强度高。这项研究为验证计算流体力学 (CFD) 模型提供了高质量数据,包括客舱几何形状、扩散器边界条件和 MD-82 商用客机头等舱的高分辨率流场。 关键词:客机客舱;客舱几何形状;流场;实验;扩散器 41 42 1. 引言 43 44 商用客机客舱中的空气分布用于维持乘客和机组人员的热舒适度 45 和空气质量。这些空气分布可以控制空气温度和 46 空气速度场,并可以稀释气体和颗粒浓度。尽管 47 航空航天工业在过去 48 十年中已经改善了飞机客舱的热舒适度和卫生状况(Space et al.,2000),空气分配系统需要进一步改进。49
• 发表日期 / 收讫日期:2021 年 4 月 6 日 • 修改发表日期 / 修改后收讫日期:2021 年 10 月 22 日 • 喀布尔日期 / 接受日期:2021 年 11 月 1 日 摘要 电子元件最关键的问题是功耗高、寿命短。本文旨在对水冷散热器的工作过程进行数值模拟,以获得最有效的设计。在此背景下,设计了四种具有不同通道(A 型、B 型、C 型、D 型)的配置,水速分别为 0.25 m/s、0.5 m/s 和 1 m/s,空气速度恒定(6 m/s),以模拟流体流动和传热。结果以温度和压力云图、速度流线图以及压力差、出口温度、温差、空气传热速率和功耗与雷诺数的关系图来评估。结果表明,在所有分析中,压力差、出口温度、功耗和空气传热速率都随着雷诺数的增加而增加。在所有配置中,水出口温度彼此非常接近,Re=2500 时在 63-65 °C 范围内,Re=5000 时在 70-72 °C 范围内,Re=10000 时在 74-76 °C 范围内。在所有配置中,A 型出口温度最低,Re=2500 时为 63.40 °C,Re=5000 时为 70.77 °C,Re=10000 时为 74.85 °C。此外,A 型在空气传热率方面表现出优于其他模型的性能,Re=2500 时该值为 1346 W,Re=5000 时该值为 1500 W,Re=10000 时该值为 1675 W。A 型几何结构中获得的最大压力差接近 3500 Pa,雷诺数值为 10000。在全面评估结果时,得出结论:B 型在传热、泵功率和进出口位置方面是最适合使用的模型。关键词:电子冷却、散热器、液体冷却、数值建模 Öz Elektronik bileşenlerin en önemli sorunları、yüksek güç tüketimi ve kısa ömürdür。但是,您可以通过使用 olarak 模型来解决这个问题。 Bu kapsamda akış ve ısı Transferini simüle etmek için suyun 0.25 m/s, 0.5 m/s ve 1 m/s hızlarında ve sabit hava hızında (6 m/s) farklı geçişlere sahip dört farklı geometri (Tip-A, Tip-B, Tip-C, Tip-D) dizayn edilmiştir。声音、基本关系、基本关系、基本关系、基本关系、基本关系、哈瓦亚奥兰的转移和雷诺兹的图像olarak değerlendirilmiştir。雷诺兹 (Reynolds) 的分析表明,他的艺术作品是从根本上发展起来的,并且是在不断发展的,因此,他将自己的作品传给了艺术大师。 Tüm modellerde suyun çıkış sıcaklıkları birbirine çok yakın olup Re=2500 için 63-65 °C, Re=5000 için 70-72 °C ve Re=10000 için 74-76 °C aralığındadır。 Tüm modeller arasında Re=2500 için 63.40 °C,Re=5000 için 70。A型出口温度最低,Re=10000时为77℃,为74.85℃。此外,Type-A 在向空气传递热量方面表现出比其他型号更好的性能,Re=2500 时为 1346 W,Re=5000 时为 1500 W,Re=10000 时为 1675 W。在 A 型几何结构中获得的最大压差为,雷诺数为 10,000 时压差约为 3500 Pa。对结果进行整体评估后,得出结论:从传热、泵功率和进出口位置来看,B型是最适合使用的模型。关键词:电子冷却,散热器,液体冷却,数值建模