随着人们认识到龋齿的发生发展依赖于病理因素和保护因素之间的平衡,当病理因素占主导地位时龋齿就会发展,而当保护因素占主导地位时龋齿则可以被阻止或逆转,龋齿病变的治疗原则逐渐转向对牙釉质病变进行预防性治疗,这样病变才有机会逆转。1–3 为了实施预防性治疗,需要在早期发现龋齿病变。然而,由于龋齿的解剖位置,早期发现龋齿可能很困难,尤其是邻面龋齿。研究发现,75% 的邻面病变位于接触区,25% 位于接触区下方,这使得视觉检测变得复杂。4 因此,当弱化的边缘脊破裂并形成空洞时,通常会检测到邻面病变。5 因此,仅通过目视检查可能会低估邻面龋病的数量。射线检查是另一种检测邻面病变的常用方法,但众所周知,射线检查通常会在晚期阶段检测到龋病,而这些龋病已经超出了再矿化干预的范围。此外,使用电离辐射会使患者面临风险,因此需要考虑替代方法来检测邻面病变。由于目视检查在检测早期邻面龋病方面的表现不够,因此已经开发了增强的视觉评分系统。其中之一是国际龋齿检测和评估系统 (ICDAS),大量研究报告称,该系统是一种准确且可重复的方法,可以检测早期病变,也可以检测病变的纵向变化。6–8
西里西亚理工大学,机械工程学院,工程与生物医学材料研究所,材料加工技术和材料科学计算机技术系电子邮件:marzena.prokopiuk@polsl.pl,leszek.dobrzanski@polsl.pl,aleksandra.drygala@polsl.pl,anna.tomiczek@polsl.pl 摘要:硅是并且将继续是光伏电池生产中使用的基本元素。硅电池占光伏产业80%以上,光伏产业是近年来增长最快的产业之一,其增长动力堪比微电子产业初期的发展。硅光伏电池的基本元件是pn结,它是通过在掺杂气氛中对p型硅进行退火而获得的。为了减少表面复合造成的损失,需要进行钝化处理,可以通过氧化Si表面或沉积SiO 2 层来实现。摘要:硅现在是、现在仍然是光伏电池生产中必不可少的元素。硅电池占光伏产业80%以上,光伏产业是近年来增长最快的产业之一,其增长力度堪比微电子产业繁荣初期的发展。硅太阳能电池的基本元件是pn结,它是通过在掺杂的气氛中加热p型硅获得的。为了减少表面复合造成的损失,通过氧化Si表面或沉积SiO2层来钝化硅表面。关键词:硅光伏电池,pn 结,钝化层 1.引言 臭氧空洞、温室效应和酸雨是现代世界最严重的生态问题,威胁着健康和生命。其原因包括:大量燃烧煤和石油等化石燃料。解决这些问题的关键是可再生能源技术的发展。人们对利用太阳辐射能发电非常感兴趣。由于运行成本低且操作简单,光伏装置非常适合为住宅和商业设施提供能源。
1. Yunus, M. 等,空洞对 BGA/CSP 焊点可靠性的影响。微电子可靠性,2003 年。43 (12):第 2077-2086 页。2. Kang, SK 和 AK Sarkhel,电子封装的无铅 (Pb) 焊料。电子材料杂志,1994 年。23 (8):第 701-707 页。3. Menon, S. 等,电子行业中的高铅焊料(超过 85%):RoHS 豁免和替代品。材料科学杂志:电子材料,2015 年。26 (6):第 4021-4030 页。4. Ringgaard, E. 和 T. Wurlitzer,基于碱金属铌酸盐的无铅压电陶瓷。欧洲陶瓷学会杂志,2005 年。25(12):第 2701-2706 页。5. Su, L.-H. 等人,熔融 Sn/Cu 和熔融 In/Cu 对中的界面反应。冶金与材料学报 B,1997 年。28(5):第 927-934 页。6. Choi, S. 等人,铅污染对共晶 Sn-Ag 焊点的影响。焊接与表面贴装技术,2001 年。7. Wood, E. 和 K. Nimmo,寻找新的无铅电子焊料。电子材料杂志,1994 年。23(8):第 709-713 页。8. Mei, Z. 和 J. Morris,共晶 Sn-Bi 焊点的特性。电子材料杂志,1992 年。21 (6):第 599-607 页。9. Yang, C.、L. Wang 和 J. Wang,倒装芯片工艺过程中芯片中超低 k 材料的断裂。材料科学杂志:电子材料,2022 年。33 (2):第 789-799 页。10. Kang, SK 等人,微电子应用中使用的无铅焊料和焊点的微观结构和机械性能。IBM 研究与开发杂志,2005 年。49 (4/5):第 607 页。
摘要:高熔点(HMP)无铅焊料、混合烧结和瞬态液相烧结(TLPS)是有望替代高铅焊料的新兴无铅替代品。无铅焊料与现有的夹片键合封装高铅焊接工艺完全兼容。混合烧结的好处是它比无铅或高铅焊料具有更高的热导率和电导率。在本研究中,首先通过芯片剪切测试评估了十种材料(包括无铅焊料、混合烧结膏和 TLPS)。在初步材料筛选之后,两种无铅焊料(焊料 1 和 2)、两种混合银烧结膏(烧结 i 和 ii)和一种 TLPS 进行内部样品组装。对于无铅焊料,借助真空回流进行了工艺优化,以降低空洞率。由于银-铜烧结比银-银烧结扩散慢且不均衡,为增强混合银烧结,需进行优化,包括对芯片金属化进行银精加工,对引线框架的夹片和键合区域进行银电镀。在 0 小时封装电气测试中,焊料 1 和烧结 i 通过并送去进行可靠性测试,而焊料 2、烧结 ii 和 TLPS 分别因金属间化合物 (IMC) 开裂、材料渗出和芯片开裂而失败。在可靠性测试中,早期可行性研究定义了热循环 (TC) 1000 次、间歇工作寿命 (IOL) 750 小时和高加速温湿度应力测试 (HAST) 96 小时的基本方案。75 个烧结 i 单元中有 1 个在 TC 1000 次循环中失败,原因是银烧结结构和芯片底部金属化之间的分离。焊料1无缺陷地通过了基本方案,接下来需要将材料的可加工性和夹持强度提高到与高铅焊料相当的水平。
虚拟活检这一术语正受到越来越多的关注。自 2015 年以来,搜索引擎 PubMed 中引用该概念的出版物数量翻了一番,并在 2021 年达到了迄今为止的最高水平。这就提出了一个问题:虚拟活检的独特特征是什么,以及它如何与计算机辅助医学的其他进步区分开来。对于乐观主义者来说,这可能是迈向侵入性更小、更加个性化的医学时代的下一步,它将利用功能成像和人工智能 (AI) 的最新进展来生成患者管理决策。对于怀疑论者来说,这个术语可能听起来空洞,就像医学领域围绕人工智能的炒作中的又一个营销短语。最终,虚拟和活检的并置不仅意味着可以为医生的工具箱添加另一种工具,还意味着希望将活检(疾病诊断中的关键程序)从物理转变为虚拟,同时仍然提供至少在传统物理活检水平上的诊断和预后信息,作为参考标准。我们评估了这一愿望的现状,并得出结论,尽管仍然存在障碍,但虚拟活检有望取代物理活检,成为诊断和治疗某些疾病的核心步骤。它的起源是希腊语中的 bios(表示生命)和 opsis(表示视觉),这表明活检使与生物存在相关的信息可供洞察。传统上,这是通过病理学家在显微镜下直接目视检查侵入性检索的组织标本来实现的。然而,虚拟活检这一术语(类似于更常见的液体活检)表明,重要的不是标本的类型或直接的视觉可感知性,而是可以从活检过程中获得的生物学见解的实用性和准确性。有趣的是,术语“虚拟”作为描述模拟的东西,在这里可能被认为是一个误称,因为作为虚拟活检输入的放射图像以与组织学幻灯片相同的方式反映了物理现实。我们规定,虚拟活检作为一种活检程序的有效性,而不是一种软件,取决于它所能提供的医学相关信息的质量和完整性,甚至超过不完善的物理活检参考标准。
短短三年间,两场灾难性事件震撼了我们的世界。有史以来最严重的疫情夺走了数百万人的生命,使无数人患病,并造成了数万亿美元的经济损失。现在,俄罗斯入侵乌克兰已造成数千人死亡,数百万人成为难民;它有可能破坏世界粮食供应,使核冲突的可能性达到冷战结束以来从未见过的水平,并再次引发了人们对旨在确保欧洲和全球和平的机构的质疑。这两起事件发生的时间如此接近,但因果关系却如此不同,它们生动地表明,尽管人类取得了所有进步,但我们仍然容易受到各种冲击和危害的影响,无论这些冲击和危害是否可预见。而危害正在增加。与十年前相比,世界各地的冲突、流离失所者和军备开支都更多了。除乌克兰外,阿富汗、埃塞俄比亚、叙利亚、也门和其他国家还有数百万人陷入日益严重的不安全境地。除了这场安全危机之外,人类还在制造环境危机。土壤退化威胁粮食安全,干旱影响供水,山地冰川融化和海平面上升造成洪水灾害,森林砍伐使重要资源和保护措施丧失殆尽。在气候变化和其他问题上,我们正迅速接近临界点,这将使恢复稳定变得更加困难。你可能会问,环境退化与和平与安全有什么关系。本报告收集的证据表明,答案是:一切。我们才刚刚开始理解安全和环境双重危机之间的联系,我们才刚刚开始感受到它们的影响。气候变化是新旧紧张源头的风险倍增器。气候变化对已经存在和已经存在冲突的地方影响最为严重。但考虑到 21 世纪互联互通的程度,它们的影响遍及世界各地——将人们和人口连接在一个不安全的环境中。这并不是人类第一次面临严重的安全和环境威胁。五十年前,酸雨摧毁了森林,臭氧空洞不断扩大,化学杀虫剂威胁着鸟类和昆虫。这种环境破坏的后果是未知的,令人深感担忧。
短短三年间,两场灾难性事件震撼了我们的世界。有史以来最严重的疫情夺走了数百万人的生命,使无数人患病,并造成了数万亿美元的经济损失。现在,俄罗斯入侵乌克兰已造成数千人死亡,数百万人成为难民;它有可能破坏世界粮食供应,使核冲突的可能性达到冷战结束以来从未见过的水平,并再次引发了人们对旨在确保欧洲和全球和平的机构的质疑。这两起事件发生的时间如此接近,但因果关系却如此不同,它们生动地表明,尽管人类取得了所有进步,但我们仍然容易受到各种冲击和危害的影响,无论这些冲击和危害是否可预见。而危害正在增加。与十年前相比,世界各地的冲突、流离失所者和军备开支都更多了。除乌克兰外,阿富汗、埃塞俄比亚、叙利亚、也门和其他国家还有数百万人陷入日益严重的不安全境地。除了这场安全危机之外,人类还在制造环境危机。土壤退化威胁粮食安全,干旱影响供水,山地冰川融化和海平面上升造成洪水灾害,森林砍伐使重要资源和保护措施丧失殆尽。在气候变化和其他问题上,我们正迅速接近临界点,这将使恢复稳定变得更加困难。你可能会问,环境退化与和平与安全有什么关系。本报告收集的证据表明,答案是:一切。我们才刚刚开始理解安全和环境双重危机之间的联系,我们才刚刚开始感受到它们的影响。气候变化是新旧紧张源头的风险倍增器。气候变化对已经存在和已经存在冲突的地方影响最为严重。但考虑到 21 世纪互联互通的程度,它们的影响遍及世界各地——将人们和人口连接在一个不安全的环境中。这并不是人类第一次面临严重的安全和环境威胁。五十年前,酸雨摧毁了森林,臭氧空洞不断扩大,化学杀虫剂威胁着鸟类和昆虫。这种环境破坏的后果是未知的,令人深感担忧。
摘要 聚对苯二甲酸乙二醇酯 (PET) 是一种理想的柔性 PCB 基材,具有成本低、生物相容性好、光学透明、易于加工和可回收等特点。这些优势与行业趋势特别一致,即电子产品无缝融入日常用品中。虽然 PET 与传统回流工艺大体不兼容,但光子焊接能够克服这种低温材料的挑战。光子焊接是一种快速兴起的方法,它依靠高强度广谱光(而不是热对流)选择性地加热焊料和电子元件,而不会损坏光学透明基材。在这项工作中,我们使用符合 SMEMA 标准的在线工具,演示了 SAC305 焊料合金的光子回流,以在 PET 芯柔性 PCB 上组装 0201 LED 元件。说明了光子工具固有的节能和产量优势,特别关注所得焊点的质量和一致性。加速热老化后验证焊点的功能完整性,并以工艺产量来表征可重复性。所得焊点的 X 射线显微镜和 SEM 横截面成像显示出坚固的金属间区域和低空洞密度。这些结果表明,光子焊接是一种实用的制造途径,可以实现 PET 柔性板独有的产品设计可能性。关键词:光子焊接、柔性混合电子器件、温度敏感、低温焊接、高通量焊接、闪光灯、LED。引言柔性印刷电路板 (flex PCB) 提供了广泛的设计可能性和用例,特别是在产品外形和减轻重量很重要的情况下。可穿戴消费电子产品是柔性 PCB 最明显的应用领域之一;健康监测 [1-3]、保形室内照明 [4] 和便携式显示器 [1, 5] 都因柔性 PCB 技术而得到了显著发展,而柔性连接器几十年来已在笔记本电脑和手机中无处不在 [6, 7]。此外,柔性 PCB 是一系列潜在颠覆性新技术不可或缺的一部分,包括食品包装监控 [8]、增强现实 [9-11] 和基于人造皮肤的生物识别传感器 [3]。
在结核病肆虐的地区,缺乏训练有素的放射科医生来快速处理 CXR 一直是一个挑战,影响及时诊断和患者监测。结核病患者肺部注释图像的缺乏阻碍了将面向数据的算法应用于研究和临床实践的尝试。结核病门户计划数据库 (TBPP,https://TBPortals.niaid.nih.gov) 是一个全球合作项目,整理了大量最危险、难以治愈的耐药结核病 (DR-TB) 患者病例。TBPP 拥有 1,179 例 (83%) 耐药结核病患者病例,是一个独特的集合,非常适合作为深度学习分类器的试验场。截至 2019 年 1 月,TBPP 数据库包含 1,538 张 CXR,其中 346 张(22.5%)由放射科医生注释,104 张(6.7%)由肺科医生注释,剩下 1,088 张(70.7%)没有注释。Qure.ai qXR 人工智能自动 CXR 解释工具在 TBPP 数据库中 346 张放射科医生注释的 CXR 上进行了盲测。Qure.ai qXR 对空腔、结节、胸腔积液、肺门淋巴结肿大的 CXR 预测与人类专家注释成功匹配。此外,我们还测试了 12 个 Qure.ai 分类器,以确定它们是否与治疗成功率相关(治疗医生提供的信息)。发现十个描述符具有重要意义:异常 CXR(p = 0.0005)、胸腔积液(p = 0.048)、结节(p = 0.0004)、肺门淋巴结肿大(p = 0.0038)、空洞(p = 0.0002)、不透明度(p = 0.0006)、肺扩张(p = 0.0074)、实变(p = 0.0004)、结核病指标(p = < .0001)和纤维化(p = < .0001)。我们得出结论,应用全自动 Qure.ai CXR 分析工具可用于快速、准确、统一、大规模的 CXR 注释辅助,因为它即使对于未用于初始训练的 DR-TB 病例也表现良好。在 TBPP 等不同数据集上测试人工智能算法(包括机器学习和深度学习分类器)对于临床采用的医疗数据分析自动助手至关重要。
人工智能 (AI) 的新时代已经开始,它可以从根本上改变人类与技术的互动方式以及从技术中获益的方式。聊天界面与大型语言模型的融合使人类可以编写自然语言查询并从机器接收自然语言响应。这项实验设计研究测试了三种流行的 AI 聊天机器人服务(称为我的 AI 学生)在完整性和准确性方面的功能:Microsoft Bing、Google Bard 和 OpenAI ChatGPT。使用李克特量表分别对完整性和准确性进行评分,分别为三分和五分。使用描述性统计和非参数检验来比较分数和量表评级。结果显示,AI 聊天机器人的总体得分为 80.0%。然而,他们在回答布鲁姆较高分类级别的问题时遇到了困难。在所有布鲁姆分类学问题(n=128)中,完整性中位数为 3.00,平均值为 2.75,准确度中位数为 5.00,平均值为 4.48。总体而言,由于响应有限(76.2%),解决方案的完整性被评为大多不完整,而准确度被评为大多正确(83.3%)。在某些情况下,生成文本被发现冗长而空洞,缺乏透视性和连贯性。在提供正确答案方面,Microsoft Bing 在三种 AI 文本生成工具中排名第一(92.0%)。Kruskal-Wallis 检验显示,三个 AI 聊天机器人在完整性(渐近sig.=0.037,p<0.05)和准确性(渐近sig.=0.006,p<0.05)方面存在显著差异。进行了一系列 Mann 和 Whitney 检验,结果显示 AI 聊天机器人在完整性方面没有显著差异(所有 p 值 > 0.015 和 0 sig.=0.002,p<0.05,r=0.3 中等效应)。 研究结果表明,虽然 AI 聊天机器人可以生成全面而正确的响应,但它们在处理更复杂的认知任务时可能存在局限性。sig.=0.002,p<0.05,r=0.3 中等效应)。研究结果表明,虽然 AI 聊天机器人可以生成全面而正确的响应,但它们在处理更复杂的认知任务时可能存在局限性。
