摘要。在这项工作中,我们通过实验研究了电应力对 T = 2 K 温度下 p 型硅 MOSFET 内单空穴传输特性可调谐性的影响。这是通过监测通道氧化物界面处三个无序量子点的库仑阻塞来实现的,众所周知,由于它们的随机起源,这些量子点缺乏可调谐性。我们的研究结果表明,当施加 -4 V 至 -4.6 V 之间的栅极偏压时,附近的电荷捕获会增强库仑阻塞,从而导致更强的量子点限制,在执行热循环重置后可以恢复到初始设备状态。然后重新施加应力会引起可预测的响应,量子点充电特性会发生可重复的变化,并且会观察到高达 ≈ 50% 的持续充电能量增加。我们在栅极偏压高于 -4.6 V 时达到了阈值,由于大规模陷阱生成导致设备性能下降,性能和稳定性会降低。结果不仅表明应力是增强和重置充电特性的有效技术,而且还提供了有关如何利用标准工业硅器件进行单电荷传输应用的见解。
这几乎是之前所有技术都无法比拟的。高吸收系数允许用 300-500 纳米厚的薄膜制成高效的太阳能电池,而高电子和空穴迁移率以及缺乏深缺陷允许较长的电荷载流子扩散长度并导致光激发电子的有效收集。[1,2] 这些特性支撑了某些卤化物钙钛矿在光伏电池中的快速发展和高效率。虽然单结太阳能电池的效率已经非常惊人,[3] 但光伏钙钛矿在短期内的“杀手级”应用被认为是用宽带隙钙钛矿顶部电池增强商用晶体硅太阳能电池,以创建串联器件。硅钙钛矿串联器件的效率已经达到 29%,已经超过了硅技术本身的记录,清楚地展示了这一概念的前景。 [4] 此类串联器件可以实现高产量生产,一些研究预测其每瓦成本将低于现有技术。[5] 毫不奇怪,这项技术的商业化尝试已经在进行中。[6]
摘要:单层过渡金属二硫属化物 (TMD) 为研究二维 (2D) 极限下的激子态提供了平台。TMD 中激子的固有属性,例如光致发光量子产率、电荷态甚至结合能,可以通过静电门控、选择性载流子掺杂或基底电介质工程进行有效控制。本文,为了实现激子态的非挥发性电可调性,从而实现 TMD 的光学属性,我们展示了一种具有单层 MoSe 2 和超薄 CuInP 2 S 6 (CIPS) 的二维铁电异质结构。在异质结构中,CIPS 的电极化导致单层 MoSe 2 中出现连续、全局和大的电子调制。利用 CIPS 的饱和铁电极化,可以在单个器件中实现电子掺杂或空穴掺杂的 MoSe 2。异质结构中载流子密度可调性高达 5 × 10 12 cm − 2 。还表征了这些器件长达 3 个月的非挥发性行为。我们的研究结果为低功耗和长期可调的光电器件提供了一种新的实用策略。关键词:激子、MoSe 2 、CuInP 2 S 6 、铁电性、2D 铁电异质结构■引言
摘要:具有原子级精确宽度和边缘结构的石墨烯纳米带 (GNR) 具有半导体特性和高载流子迁移率,是一类很有前途的光电子纳米材料。了解 GNR 中载流子产生的基本静态光学特性和超快动力学对于光电应用至关重要。结合太赫兹光谱和理论计算,我们报告了液相分散 GNR 中强激子效应,结合能高达 ∼ 700 meV,宽度为 1.7 nm,光学带隙为 ∼ 1.6 eV,说明了光生电子和空穴之间固有的强库仑相互作用。通过跟踪激子动力学,我们发现 GNR 中激子的超快形成具有超过 100 ps 的长寿命。我们的研究结果不仅揭示了 GNR 中激子的基本方面(强结合能和超快激子形成等),而且还突出了 GNR 在光电器件中的良好性能。关键词:石墨烯纳米带、激子、激子形成、激子结合能、太赫兹光谱 ■ 简介
简介:科学计数法和有效数字。不同系统中的单位。矢量:矢量回顾、矢量导数、线积分和面积分、标量的梯度。力学:坐标系。恒定加速度下的运动,牛顿定律及其应用,匀速圆周运动。涡旋运动,摩擦力。功和能量。势能、能量守恒、能源和我们的环境。静电和磁学:库仑定律、高斯定律、导体周围的电场、电介质。磁场。电流上的磁力。半导体物理学:半导体中的能级、空穴概念、本征区域和非本征区域、质量作用定律、P-N 结、晶体管。波和振荡:具有一个自由度的系统的自由振荡、经典波动方程。连续弦的横模。驻波。波的色散关系。光学与激光:光学和激光的基本介绍。衍射光栅。激光器,粒子数反转。谐振腔。量子效率。氦氖激光器、红宝石激光器和二氧化碳激光器。现代物理学:光电效应、康普顿效应、氢原子的玻尔理论、原子光谱、质量减小、德布罗意假设、布拉格定律、电子显微镜、塞曼效应、原子核、质能关系、结合能、核力和基本力、指数衰减和半衰期。
晶体管的名称来自“传输”和“电阻”,它是微电子集成电路的基本元件,在纳米电子尺度上经过必要的改变后,它仍将保持原有的地位:它还非常适合放大等功能,它还执行一项基本功能,即根据需要打开或关闭电流,就像一个开关装置(图)。因此,它的基本工作原理可直接应用于逻辑电路(反相器、门、加法器和存储单元)中二进制代码的处理(0,电流被阻止,1,电流通过)。晶体管基于电子在固体中而不是在真空中的传输,就像旧式三极管的电子管一样,它由三个电极(阳极、阴极和栅极)组成,其中两个电极用作电子储存器:源极用作电子管的发射极灯丝,漏极用作集电板,栅极用作“控制器”。这些元件在当今使用的两种主要晶体管类型中以不同的方式工作:先出现的双极结型晶体管和场效应晶体管 (FET)。双极晶体管使用两种类型的电荷载体,电子(负电荷)和空穴(正电荷),并由相同掺杂(p 或 n)的半导体衬底部分组成
摘要 — 我们研究了具有 TiN/Hf 0.5 Zr 0.5 O 2 /SiO 2 /Si (MFIS) 栅极结构的 FeFET 在耐久疲劳过程中的电荷捕获。我们提出了一种通过测量金属栅极和 Si 衬底中的电荷来实验提取存储器操作期间捕获电荷数量的方法。我们验证了在耐久疲劳过程中捕获电荷的数量会增加。这是第一次通过实验直接提取捕获电荷并验证其在耐久疲劳过程中会增加。此外,我们模拟了耐久疲劳过程中捕获电荷和铁电极化切换之间的相互作用。通过实验结果和模拟数据的一致性,我们证明了随着存储窗口的减小:1) Hf 0.5 Zr 0.5 O 2 的铁电特性没有降低。2) 栅极堆栈上带隙中的陷阱密度增加。3) 存储窗口减小的原因是编程操作后捕获电子增加,而与空穴捕获/去捕获无关。我们的工作有助于研究FeFET的电荷捕获行为和相关的耐久疲劳过程。
摘要:单壁碳纳米管 (SWCNT) 的光物理因其在光收集和光电子学中的潜在应用而受到深入研究。SWCNT 的激发态形成强结合的电子-空穴对,激子,其中只有单重态激子参与应用相关的光学跃迁。长寿命的自旋三重态阻碍了应用,但它们成为量子信息存储的候选者。因此,非常需要了解三重态激子的能量结构,特别是 SWCNT 手性依赖的方式。我们使用专用光谱仪报告了对几种 SWCNT 手性的三重态复合发光(即磷光)的观察结果。这得出了单重态-三重态间隙与 SWCNT 直径的关系,并遵循基于量子约束效应的预测。在高微波功率(高达 10 W)辐射下的饱和度可以确定三重态的自旋弛豫时间。我们的研究敏感地区分了最低光学活性状态是从同一纳米管上的激发态填充的,还是通过来自相邻纳米管的福斯特激子能量转移填充的。关键词:碳纳米管、光学检测磁共振、弛豫时间、量子约束、分子标尺、福斯特激子转移 U
摘要:范德华 (vdW) 材料的垂直堆叠为二维 (2D) 系统的研究带来了新的自由度。层间耦合强烈影响异质结构的能带结构,从而产生可用于电子和光电子应用的新特性。基于微波显微镜研究,我们报告了门控二硫化钼 (MoS 2 )/二硒化钨 (WSe 2 ) 异质结构器件的定量电成像,这些器件在传输特性中表现出有趣的反双极效应。有趣的是,在源漏电流较大的区域,n 型 MoS 2 中的电子和 p 型 WSe 2 段中的空穴几乎平衡,而异质结构区域的移动电荷则耗尽。局部电导的空间演变可以归因于沿 MoS 2 − 异质结构 − WSe 2 线的横向能带弯曲和耗尽区的形成。我们的工作生动地展示了新传输行为的微观起源,这对于充满活力的范德华异质结研究领域非常重要。关键词:范德华异质结构、微波阻抗显微镜 (MIM)、反双极效应、能带排列、耗尽区
引言 纵观人类历史,技术的重大进步通常都伴随着材料革命。例如石器时代后青铜工具的发明、铁取代青铜、受工业革命刺激并推动的钢和铝冶金术的发展,以及使当今数十亿美元科技领域大部分得以实现的硅的优化和表面钝化。今天,量子材料领域类似的颠覆性进步可能源自新兴的量子信息科学 (QIS) 领域,该领域利用量子自由度进行信息存储和处理。1 操纵和利用量子态的技术将彻底改变当前的计算、传感、存储和通信范式。“量子材料”一词的范围相当广泛,涵盖了所有性质主要由量子力学原理和现象决定的材料。量子材料与其他材料的一个主要区别在于它在宏观长度尺度上表现出量子力学效应。事实上,一切物质都是依据微观尺度上的量子力学原理,由基本量子粒子和准粒子(即电子、空穴、自旋和声子)构成的,例如