重申分配给Ananth Technologies Private Limited(ATPL)银行设施的评级非常反映了2023年11月15日的强大订单订单,该订单的位置是2023年11月15日,它提供了中期收入的可见性,并将其转化为舒适的订单 /总营业收入(OB /TOI),为4.28倍。通过租赁租金,舒适的杠杆和覆盖范围指标以及有利的行业前景,稳定的收入。评级通过租赁租金,舒适的杠杆和覆盖范围指标以及有利的行业前景从稳定的收入中获得收益。收入增长了6.5%,利润率在23财年的28.73%仍然很高,因为其通过设计,开发和制造高度熟悉的系统和子系统的收入中的大部分,并在航空航天和国防工业(数字系统)中应用,从而获得了更好的利润率。资本结构仍然对0.25倍的整体齿轮率保持舒适,而公司的总债务与总债务(GCA)在23财年期间略有提高到3.26倍。评级还从其经验丰富的发起人和管理团队以及综合开发中心的健康运营效率中获得了舒适感。atpl多年来,多年来一直在设计和开发产品和服务,并与著名的组织建立了关系,例如印度太空研究组织(ISRO)卫星中心,Vikram Sarabhai空间中心,Brahmos Aerospace,Bharat Dynamersics Limited,国防研发组织(DRDO),DRO),飞机收购,印度航空等,等等。评级敏感性:可能导致评级动作的因素但是,由于较高的库存和应收期间,业务固有的库存和应收期限,客户集中风险是该公司的收入集中在公司的前五名客户的收入集中,因此国防部的收入集中度为67%,并且运营规模中等,因此评级受到较高的库存和应收期间的限制,而客户集中的风险则受到延长的运营周期的限制。
职位:大地球数据分析部博士后研究员 编号:ERA-PD-BEDAD-69 类别:全职或兼职工作 地点:塞浦路斯利马索尔埃拉托斯顿卓越中心 埃拉托斯顿卓越中心大地球数据分析部四 (4) 个博士后研究员职位 塞浦路斯理工大学 (www.cut.ac.cy) 埃拉托斯顿卓越中心 (www.eratosthenes.org.cy) 现招聘埃拉托斯顿卓越中心大地球数据分析部最多四 (4) 个博士后研究员职位。这些职位以全职(100%)或兼职形式开放。成功的候选人将在欧盟资助的多个埃拉托斯特尼卓越中心项目下进行研究和开发产品,包括旗舰项目 Excelsior H2020 团队项目 (https://excelsior2020.eu/)。“ENFIELD”项目 (https://enfield-project.eu/) 由 HORIZON- CL4-2022-HUMAN-02 资助,将创建一个独特的欧洲卓越中心,在自适应、绿色、以人为本和值得信赖的人工智能支柱方面进行基础研究,这些人工智能是新的、战略性的,对欧洲成功开发、部署和接受人工智能至关重要,并将通过吸引来自欧洲世界一流研究和行业参与者的最优秀人才、技术和资源,并与行业挑战同步开展顶级研究活动,以加强欧盟在人工智能领域的竞争地位,并为欧洲公民和企业的利益创造重大的社会经济影响,从而进一步推进医疗保健、能源、制造和太空等垂直领域的研究。 “AI-OBSERVER”项目(https://ai-observer.eu/)由HORIZON-WIDERA-2021-ACCESS-03(结对)项目资助,旨在通过在减少灾害风险专题领域开展多项关于地球观测应用人工智能能力建设活动,显著加强和促进埃拉托斯顿卓越中心的科学卓越性和创新能力以及研究管理和行政技能。
2个智能锁今天智能,无钥匙进入的锁,包括Deadbolt,Lever手柄,挂锁等,由于三个关键因素:数字化的大趋势,以新的以智能手机以智能手机为中心的生活方式以及对共享访问管理的需求日益增加,因此可以持续增长。根据最近的一份报告,全球智能锁定市场目前价值为2022年的19.5亿美元,预计将从2023年至2030年以19.6%的复合年增长率增长。今天的智能锁解决方案主要是电池供电的微控制器系统,可提供BLE,NFC或Wi-Fi等连接选项。智能锁定供应商不断为其产品添加新功能,以保持竞争力并与他人区分开。智能锁现在提供的一些现代功能包括距离感应和面部识别,它们共同为用户创造了无缝的门接入体验。此外,改善电池寿命仍然是所有供应商仍在努力的具有挑战性的话题。这是因为电池寿命是客户选择智能锁时考虑的关键因素。在许多室外应用中,由于危险的室外环境中电池的可靠性问题,无法使用电池供电的智能锁。为了克服此问题,使用了电池键入解决方案,当将钥匙插入锁定时,锁的电子电路由钥匙中的电池供电。这解决了室外电池问题。但是,这并不是真正的智能锁定解决方案,因为操作锁仍然需要物理钥匙。因此,实现了一个真正的在某些地区,由于各种原因,不可用的智能锁解决方案。例如,由于常规更换电池所需的成本和精力,具有大量锁的组织,无论是工业和消费者还是以工业为中心的组织,都不愿采用智能锁定解决方案。在石油和航空等行业中,由于安全要求,禁止使用具有Li-Batteries的智能锁。同样,在诸如室外邮箱,室内机柜和自行车之类的消费产品中,由于电池相关的问题,尺寸限制或成本限制,电池供电的解决方案不合适。
2024 年 8 月 15 日 发件人:海军一级军士长 收件人:全体一级军士长 主题:致全体一级军士长的信息 1. 自去年以来,士官长一直率领我们的战斗队在不断受到威胁和充满挑战的地区工作。无论是在红海的武器交战区持续作战,还是在南太平洋威慑对手,带领他们的团队度过艰苦的维护期,还是准备和训练他们的战斗队进行部署,士官长一直是确保从海底到太空等各个领域每个责任区任务成功不可或缺的一部分。 2. 虽然伟大领导者最重要的品质是自我意识,但每个士官长都能自我评估和自我纠正也至关重要。了解自己作为一个人和作为一个领导者的身份,可以让你愿意并持续评估自己和团队的表现,并做出必要的改变来改进。去年,我们讨论了对士官长在品格、能力和人脉方面领导的期望。现在,随着卓越文化 2.0 的发布,我们将把关注点从联系扩展到文化。我们与水兵、军官室以及彼此之间的联系对于培养海军的卓越文化至关重要。首席军士长通过培养优秀人才、优秀领导者和优秀团队,直接促进了海军作战文化的发展。3. 所有军士长诚实地自我评估其表现的能力对于打击军营内部的假冒行为和分裂至关重要。然而,拥有评估自己的能力只是等式的一半。军士长不仅能识别错误,而且还知道什么是“正确”,并能与团队沟通。军士长必须能够培训、指导和指导水兵自我评估和自我纠正其表现,接受红色,并自信地向指挥官建议哪些方面做得好,哪些方面做得不好,以及哪些方面需要帮助。我们必须以不同的方式思考、行动和运作,以提高我们的表现,确保我们的团队做好在战斗中取得决定性胜利的准备。4. 我将在今年的入职季发送三封信——每两周一封。目标是让我们整个食堂都提出相同的问题,进行类似的对话,共同成长。每个食堂都会坐下来就每个话题进行坦诚的对话。所有首席军士官和首席军士官候选人都必须参加这些讨论。不要将此视为“候选人培训”,而应视为食堂讨论。我们必须积极寻找真正需要改变的领域并付诸行动。詹姆斯·M·霍尼阿,海军第 16 任首席军士官
20 世纪最后 25 年,一方面新材料和新工艺取得了突破性进展,另一方面,为了满足日益复杂的技术,人们对新奇、可定制、可集成和可适应的材料的需求也随之增加。21 世纪前 25 年,数字化和可持续性分别成为未来技术的驱动力和轨道。不可否认,技术史建立在材料的进步之上。与此同时,过去所有的技术革命浪潮都是由资源过度开发所驱动,导致废物量不断增加和排放有增无减。因此,技术进步的目标,进而材料研究的目标,本质上是相互冲突的。在这里,转化研究的作用是找到优化的解决方案。过去几十年来,出现了大量新材料(如纳米材料、金属玻璃、高熵合金、生物材料、生物可降解聚合物、功能陶瓷、稀土、半导体材料、智能及自适应材料等)和新工艺(如氢基加工技术、非平衡加工、自下而上加工、自组装等)。与此同时,理论、实验和计算三大知识流的独特融合加速了对材料科学中复杂和多尺度现象的探索。例如,自下而上的处理不仅在以预配置或自组装模式构建一维、二维和三维材料结构方面非常有用,而且还能揭示不同长度和时间尺度的现象,而这些现象是自上而下的路线无法通过实验获得的。尽管近年来取得了大量的研究成果,但除了医疗保健、半导体、太空等少数领域外,新兴材料和工艺的升级和对标与所需产品之间的对比,尚未引起研究部门和/或行业的相应关注。此外,技术和产品创新链中的关键问题和障碍也仍有待解决。为了迫切需要发展研究框架和举措,以便将先进材料研究的突破转化为商业技术、产品和应用,IOP 创办了《转化材料研究》杂志。该杂志的范围旨在解决材料创新链的所有阶段,从发现和发明到产品开发和制造。鉴于金属和材料转化研究的重要性日益增加,国家先进制造技术研究所冶金和材料工程系在纪念其银禧之际,主动组织了金属和材料转化研究国际会议。会议的目的是为研究人员、行业专家、新兴工程师、资助机构、政策制定者和其他利益相关者创建一个共同平台,以分享他们在会议主题领域的知识和观点。
适用于高可靠性应用的高压 GaN HEMT 现提供 15 A 和 30 A 低电流版本 加利福尼亚州米尔皮塔斯 – 2021 年 1 月 6 日 – Teledyne e2v HiRel 正在为其基于 GaN Systems 技术的业界领先的 650 伏高功率产品系列添加两款新型加固型 GaN 功率 HEMT(高电子迁移率晶体管)。两款新型高功率 HEMT TDG650E30B 和 TDG650E15B 分别提供 30 安和 15 安的低电流性能,而去年推出的原始 650 V TDG650E60 可提供 60 A 的电流。这些 650 V GaN HEMT 是市场上可用于要求高可靠性的军事、航空电子和太空应用的最高电压 GaN 功率器件。它们非常适合电源、电机控制和半桥拓扑等应用。它们采用底部冷却配置,具有超低 FOM Island Technology® 芯片、低电感 GaNPX® 封装、>100 MHz 的超高频开关、快速且可控的下降和上升时间、反向电流能力等。Teledyne e2v HiRel 业务开发副总裁 Mont Taylor 表示:“我们很高兴继续为太空等需要最高可靠性的应用推出 650 V 系列高功率 GaN HEMT。我们相信,这些新器件的较小尺寸封装将真正使客户受益于设计最高功率密度项目。”TDG650E15B 和 TDG650E30B 都是增强型硅基 GaN 功率晶体管,可实现大电流、高击穿电压和高开关频率,同时为高功率应用提供非常低的结到外壳热阻。氮化镓器件已经彻底改变了其他行业的电源转换,现在采用耐辐射的塑料封装,经过严格的可靠性和电气测试,以确保关键任务的成功。这些新型 GaN HEMT 的发布为客户提供了关键航空航天和国防电源应用所需的效率、尺寸和功率密度优势。对于所有产品线,Teledyne e2v HiRel 都会针对最高可靠性应用进行最严格的认证和测试。对于功率器件,此测试包括硫酸测试、高海拔模拟、动态老化、高达 175°C 环境温度的阶跃应力、9 伏栅极电压和全温度测试。与碳化硅 (SiC) 器件不同,这两种器件可以轻松并联实现,以增加负载电流或降低有效 RDSon。这两种新器件现在都可以订购和立即购买。
在当今这个充满变革、颠覆、速度和机遇的现代时代,技术比以往任何时候都更加重要。商业战略正在推动技术变革的需求;技术创新也在推动行业和商业模式的颠覆和新机遇。投资技术的原因非常明确。传统上,大多数公司都非常擅长使用技术来支持单一功能或特定部门的业务需求。这些部门解决方案仍然是必要的,也是赌注,但已不再足够。成败的区别在于能否实现更复杂和动态的业务能力,如敏捷性、无缝的客户和员工体验、运营效率和利润率扩大、全球化、并购和产品创新。学习型组织必须擅长提供新型技术解决方案。这些解决方案是多种部门能力的跨职能组合。它们在新系统和现有遗留系统中协调新技术和能力。这些解决方案必须经过架构设计,以便能够随着业务变化的速度而变化。为了满足这种日益增长和变化的需求,大型企业的业务和 IT 领导团队必须改变他们对 IT 的看法,并以新的、更好的方式合作。 Feld Group Institute 帮助大型企业实现技术支持的业务转型。几十年来,Feld Group Institute 团队领导了数十次此类转型(作为运营主管)、帮助了数十次转型(作为 CIO 和 CxO 及其团队的顾问)并促成了数十次转型(作为教师和推动者)。我们的客户和我们参与的转型包括菲多利、伯灵顿北方圣达菲铁路、达美航空、家得宝、可口可乐、西屋/哥伦比亚广播公司、联邦快递、蒙特利尔银行和西南航空等公司。随着时间的推移,在这些公司中,我们学到了重要的模式和领导原则,并制定了一个有凝聚力的框架。我们与行业、客户和领导者分享我们的知识和指导,他们向我们寻求观点、建议、咨询、领导力发展培训和同行社区。我们长期以来所遵循和传授的最重要的原则之一是,组织应该思考、论证、规划和构建大项目,同时也能够分解和委托管理、开发和实施小项目。思考、论证、规划和构建大项目允许以不受约束的视角对“可能性的艺术”进行有抱负的思考,并鼓励领导层考虑企业范围的权衡、整体架构原则和设计,以及从业务和技术角度进行最佳排序。这些更广泛、更长远的战略决策和计划必须分解并细化为可操作的工作单元。然后,这项工作的执行将以小规模的方式进行管理、开发和实施,以创造速度、质量、效率以及频繁和持续地交付业务价值。无论时代、炒作周期、标语或术语如何,这些都是高速、高质量、高效和风险管理交付优秀软件和系统所需的物理条件。
2024年6月24日,来自Gib Hyderabad的棱柱形和圆柱细胞的技术许可:Amara Raja Advanced Cell Technologies Pvt。Ltd (ARACT), a wholly owned subsidiary of Amara Raja Energy & Mobility Ltd (ARE&M), one of India's leading battery manufacturers, has signed a technical licensing agreement with GIB EnergyX Slovakia s.r.o., a subsidiary of Gotion High-Tech Co Ltd. As part of the agreement GIB EnergyX will license Gotion's world class LFP technology for lithium-ion cells to Aract。这一综合协议使Amara Raja能够在圆柱和棱柱形构成中生产世界一流的LFP细胞。许可范围提供了对Cell Technology IP的访问权限,支持建立符合最新一代流程技术的Gigafactory设施,与Gotion的全球供应链网络集成,用于关键电池材料,以及用于解决方案部署的客户技术支持。技术转移和服务支持将完全补充Amara Raja为实施其Gigafactory制造能力以及其高级研究与创新中心“ EpoSistive Energy Labs”的努力,该公司旨在领导印度在该领域的研发能力。去年,阿玛拉·拉贾(Amara Raja)宣布了95亿卢比的投资支出,以建立Telangana州的Amara Raja Giga走廊。该公司的目标是通过在整个合作期内持续提高细胞性能和过程效率,以保持其产品竞争力和现代。Vikramadithya Gourineni,执行董事,他补充说:“我们很高兴宣布与Gotion和Inobat的伙伴关系。Amara Raja和Gotion既是斯洛伐克新兴的锂电池技术公司Inobat的股东兼董事会成员,可以解决电动航空等先进应用程序,并开发了强大的“摇篮”电池价值链的摇篮生态系统。Gotion High-Tech和Inobat之间的合资企业 GIB最近与斯洛伐克政府签署了一项投资协议,以开发该国的第一个LFP电池Gigafactory。 Gotion High-Tech设有8个全球研发中心,8,000个涵盖电池行业价值链的专利技术,全球20个主要的制造地点,预计到2025年的容量布局预计将达到300GWH。。 在过去的几年中,我们已经花费了大量时间和精力来了解全球新的能源景观,并通过我们对Inobat的投资来决定成为不断发展的锂电池生态系统的一部分。 通过其“全球C2C联盟”与GIB进行进一步的合作,使我们对加强我们的技术和供应安全性充满信心。 我们确定GIB最近与斯洛伐克政府签署了一项投资协议,以开发该国的第一个LFP电池Gigafactory。Gotion High-Tech设有8个全球研发中心,8,000个涵盖电池行业价值链的专利技术,全球20个主要的制造地点,预计到2025年的容量布局预计将达到300GWH。在过去的几年中,我们已经花费了大量时间和精力来了解全球新的能源景观,并通过我们对Inobat的投资来决定成为不断发展的锂电池生态系统的一部分。通过其“全球C2C联盟”与GIB进行进一步的合作,使我们对加强我们的技术和供应安全性充满信心。我们确定
伊利诺伊州议会大厦更新 竞选季正式开始!现在我们已经结束了伊利诺伊州博览会(传统的为政党造势的开幕式)和芝加哥民主党全国代表大会,当选领导人将专注于各自的选举工作。虽然伊利诺伊州没有太多竞争激烈的竞选活动,但立法者将继续忙于支持他们的同事或在战场州工作以支持候选人。在伊利诺伊州民主党全国委员会的早餐会上,州长 Pritzker 暗示了第三任期,并表示他的妻子 MK Pritzker 将是决定性因素。Pritzker 还在黄金时段发表了讲话,当晚发表讲话的还有前总统巴拉克·奥巴马和前第一夫人米歇尔·奥巴马。其他伊利诺伊州发言人包括芝加哥市长 Brandon Johnson、参议员 Dick Durbin、参议员 Tammy Duckworth 和美国众议员 Lauren Underwood。两院都将返回州议会大厦参加秋季否决会议,会议定于 11 月 12 日至 14 日和 11 月 19 日至 21 日举行。第 104 届州议会定于 2025 年 1 月 8 日开幕,预计在新一届州议会召开前几天将举行“跛脚鸭”会议。伊利诺伊州禁止在初选后“提名”立法候选人的新法律现已暂停执行。根据伊利诺伊州最高法院的裁决,初选后被共和党“提名”的候选人将继续留在 11 月的选票上。最高法院发布了所谓的“Perlman 命令”,确认了下级法院暂时停止当前周期该法律的决定,而不会为未来的案件树立先例。法院的意见指出,两名法官回避了该法律,其余法官无法获得四票多数,因此维持了下级法院的命令。该裁决并没有使该法律完全无效,而只是阻止了该法律在今年大选中的执行,因为 14 名原告——均为共和党候选人——在该法律通过后起诉了该州。相关消息,伊利诺伊州选举委员会裁定共和党候选人杰伊·基文 (Jay Keeven) 可以出现在 11 月的选票上。基文是众议院候选人,预计他将与大都会东区的民主党众议员凯蒂·斯图尔特 (Katie Stuart) 展开激烈角逐,但他并不是诉讼的一方。银行提起诉讼,质疑伊利诺伊州新的信用卡费用法代表银行和信用合作社的行业团体正在起诉伊利诺伊州的一项新法律,该法律将免除信用卡处理商收取的交换费中的州税和小费。立法者决定降低信用卡和借记卡交易的交换费(主要由商家支付),以减轻新法律带来的打击,该法律将减少商家为征收州销售税而获得的报酬。银行家、信用卡公司和联合航空等航空公司(它们严重依赖从信用卡合作伙伴关系中获得的利润)从一开始就反对这项法律。IDJJ 将接收来自 IDOC 的青年成人转学,以提供高中教育服务 8 月 9 日,州长 JB Pritzker 签署了参议院法案 426,该法案授权伊利诺伊州青少年司法部 (IDJJ) 和伊利诺伊州惩教部 (IDOC) 将有资格接受高中教育服务的新兴成年人从 IDOC 机构转移到 IDJJ 机构。参议院法案 426 允许将符合条件的 18 至 21 岁青少年考虑转移到 IDJJ,以参与适合其发展的教育服务以及整体服务,例如个人或团体治疗、案例
黑体是一个理想化的物体,它吸收所有传入的辐射并反射或传输,同时也是所有波长辐射的完美散热器。这种现象被称为黑体辐射,其特征是热能光谱,该热能光谱显示了在一系列波长或频率上的辐射强度。可以使用量子理论控制的几种原理来描述黑体辐射的定律。需要特殊的望远镜才能观察肉眼不可见的恒星发射辐射。上次审查于2023年1月14日。“黑体”重定向。注意:这与黑体不同(电影)不同。波兰实验室中的黑体散热器近似于普朗克定律描述的理想模型,并作为光谱辐照度的标准。随着黑体的冷却,其辐射强度降低,峰值波长向更长的波长移动。为了进行比较,经典的雷利 - 简 - 与其紫外线灾难一起显示。黑体或黑体是一个理想化的物体,可吸收所有电磁辐射,而不论入射率频率或角度如何。在热平衡处发出的黑体发射的辐射称为黑体辐射。它的名称来自它吸收所有颜色的光。相比之下,白色身体在各个方向均匀地反映了射线。在恒温下的黑体根据普朗克定律发出电磁辐射,其光谱仅由温度决定(见图),不受形状或组成影响。理想的黑体具有两个关键特性:1)它是一个理想的发射极,2)它垂直于发射方向,无论方向如何,它都会辐射各向同性的能量。真实材料会散发出黑色能量水平的分数 - 发射率。按照定义,热平衡中的黑体具有发射率ε= 1。发散性较低的身体称为灰色身体。以高发射率建造黑体仍然是一个令人感兴趣的话题。在天文学,恒星和行星辐射中有时会使用有效温度来表征,该温度代表了发射相同总电磁能通量的黑体温度。艾萨克·牛顿(Isaac Newton)在他的1704年书中介绍了黑色身体的概念,询问黑体是否比其他颜色更容易从光中吸收热量,因为进入它们的光不会反映出,而是被反射的,有时会吸收,有时会散布在内部,直到它消散。古斯塔夫·基尔乔夫(Gustav Kirchhoff)在1860年首先提出了一个黑体的想法:“可以想象到身体完全吸收了所有事件射线,既不反映也没有传播。”黑体被定义为从所有波长和角度的辐射吸收器。理想化的表示,称为黑体,允许所有入射辐射无反射地进入它,并在内部吸收所有辐射。[10]此定义下降了“无限小厚度”的引用。[9]一个用于模拟黑色表面的广泛使用的模型是一个隔离的围墙中的一个小孔,墙壁上有不透明对辐射的壁。但是黑体辐射到底是什么?入射辐射通过孔进入,如果外壳足够大,则几乎没有机会再排放。但是,当入射辐射波长超过孔的直径时,由于反射,该模型并不完美。[10]有限大小的腔体内的辐射不会遵循理想的planck频谱,而波长与腔的大小相当或大。[11]围栏中的一个小孔可以逃脱一些辐射,近似黑体辐射,该辐射表现出温度t的能量分布特征,并且与小于孔的大小的波长无关。[11]热力学的第二定律指出,如果不受干扰,腔内的辐射最终将达到热平衡,[12],尽管此过程可能需要很长时间。[13]通常,通过腔或壁中的材料对辐射的持续吸收和辐射发射达到平衡。这种机制“热化”传入辐射,将能量重新分布直至光子达到普朗克分布。与稀释的气体(如稀释气体)相比,凝结物质的存在速度显着加快了热量化的速度。与与物质的相互作用相比,低于数十亿的开尔文,直接光子 - 光子相互作用通常微不足道。[19]可以将光子视为一种相互作用的玻色子气,[20]在H Theorem下描述,任何相互作用的玻色子气体都将在一般条件下达到热平衡。通过热辐射的身体行为通过其传播(τ),吸收(α)和反射(ρ)来描述。身体及其周围环境之间的界面可能是粗糙的或光滑的。对于非反射界面,将区域与不同的折射率分开,反射和折射定律必须是粗糙的。理想化的不透明体不会传输辐射,但可能反映出某些辐射,而透明的身体会传递所有入射辐射。对于所有波长,灰色体具有常数α,ρ和τ。白色身体在各个方向均匀地反映了所有入射辐射。黑体的特征是τ= 0,α= 1,ρ= 0。普朗克的模型描述了完美的黑色身体,但由于表面缺陷而指出了它们在自然界的不存在。基尔乔夫(Kirchhoff)介绍了一个完美的黑体,具有完全吸收的表面层,但普朗克(Planck)指出了对这一想法的严重限制。黑体的实现包括1898年的Otto Lummer和Ferdinand Kurlbaum的腔辐射源,该辐射源已用于迄今为止用于辐射测量。类似黑体的材料是为了伪装和雷达吸附剂应用以及太阳能用途而寻求的。黑体材料是大多数波长的光吸收器,使它们有效地发射红外辐射。这些特性使其非常适合在空间或真空等极端环境中加热应用。此外,它们是有效的抗反射表面,可减少望远镜和相机中的流浪光,从而更准确地观察。具有高折射率的纳米孔材料也表现出较低的反射率,有些人的平均反射率为0.045%。研究人员一直在探索对传统灯泡涂料(例如碳纳米管)进行改进的新材料,这些材料可以实现近乎完美的黑体行为。创建诸如Nanoblack和Super Black之类的材料的创建已经突破了吸收率的边界,某些材料吸收了多达99.9%的传入光。恒星的有效温度取决于理想的黑体的温度,该温度辐射与恒星相同的能量。可以使用不同的颜色指数(例如B-V和U-B)来计算此值,这些颜色指数提供了有关恒星表面通量的信息。通过分析这些指数,天文学家可以估算恒星的有效温度,并将其与完美的黑体温度进行比较。对主要序列和超级恒星的研究揭示了它们的颜色与有效温度之间存在粗糙的相关性。这些恒星群的曲线位于相应的黑体U-B指数下方,表明它们比具有相同颜色指数的理想黑体发出的紫外线少。有趣的是,太阳的有效温度低于其光球温度,该温度随着深度而变化。还使用颜色颜色图中的B-V和U-B颜色指数计算了黑洞的有效温度。物理学家认为,黑洞的温度非零,辐射具有几乎完美的黑体光谱,最终通过真空波动蒸发。大爆炸理论的基础是宇宙学原理,表明在大范围内,宇宙是同质和各向同性的。最初,在编队后大约一秒钟,它是一个在10^10 K以上的温度下的黑色身体。随着它的扩展,物质和辐射冷却,导致当今的宇宙微波背景辐射,在2.7 k左右,它几乎是理想的planck频谱。这种辐射源于Anisotroproproy的真正黑体的完善,这一辐射由Anisotropropy变体的一部分,一部分大约100,000。Stefan-Boltzmann定律将黑体辐射的总能量为σT^4,其中σ是Stefan-Boltzmann常数(5.67×10^-8 W/M^2/K^4)。一种简化的冷却方法涉及补充该法律的发射ε≤1,并考虑辐射,热容量和温度随时间变化的功率变化。但是,这些假设忽略了细节,例如热重新分布机制,变化的组成,相变和温度变化的发射率。这种简化可以通过将总发射功率与发射表面积联系起来来估计对象尺寸,该功率用于确定X射线突发源自中子星而不是黑洞。热辐射定律与物体如何在各种波长中发出或吸收光线有关。通过引入少量物质可以吸收并散发所有光频率,可以加速腔中辐射的热平衡。这是基于包括普朗克,劳登和曼德尔和狼在内的各种物理学家的工作。实现热力学平衡的关键在于光子之间的相互作用,当仅存在光子时,这可以忽略不计。需要少量物质来促进此过程。当光子彼此相互作用或与物质相互作用时,除非分子的分布达到平衡,否则随着时间的推移会导致热能降低。为了表征这种情况,可以定义称为“ H”的合适数量。这个概念对于理解气体如何随着碰撞而进行的行为和变化至关重要。此外,某些材料在吸收或反射光(包括极端黑暗)方面具有出色的特性。示例包括垂直排列的单壁碳纳米管和低密度纳米管阵列制造的极深的材料。这些概念对于理解量子水平的辐射和物质的行为至关重要,尤其是在热力学和统计力学中。在包括物理,天文学和材料科学在内的各个领域进行了广泛的研究,黑体光谱及其性质的概念已得到广泛的研究。由理查德·布朗(Richard Brown)及其同事在英国国家物理实验室创建的“有史以来最黑的黑色”材料就是这种现象的一个例子。对黑人光谱的研究可以追溯到古代,诸如亚里士多德(Lawrence Hugh Aller,1991年)等哲学家的观察以及后来的天文学家(如David F Gray)(1995年2月)。在天体物理学和恒星天文学的背景下,还探索了与材料相互作用的光子的研究(Kenneth R. Lang,2006; B. Bertotti等,2003)。黑体光谱的形成受源中温度曲线(例如太阳或恒星)的影响(Simon F. Green等,2004; David H. Kelley等,2011)。此外,近年来已经对热力学及其在黑洞中的应用进行了广泛研究(Robert M Wald,2005年)。最近的研究还探索了碳纳米管的特性,可用于创建接近完美的黑色表面(Ghai等,2019)。这些材料的开发对包括能源,电子和航空航天在内的各个领域具有重要意义。总体而言,对黑体光谱及其特性的研究继续促进我们对物理世界及其许多奥秘的理解。目前尚无实验或观察证据来支持黑洞热力学的理论。研究人员提出了各种例子,包括通过中微子的发射和辐射冷却中子恒星,但是这些想法尚未经过经验测试。中子恒星中的冷却过程受热容量和中微子发射之间的平衡的控制,其生命的前105 - 6年。后来,夸克物质核心变得惰性,由于核物质分数的中微子排放,恒星进一步冷却。请注意,此解释版本着重于原始文本中介绍的主要思想和概念,而不是提供有关提到的每个点的详细摘要。**基希霍夫的辐射法及其历史**在柏林,在公元783 - 787年之间,古斯塔夫·基希霍夫(Gustav Kirchhoff)就身体发射和吸收辐射的能力之间的关系做出了重大发现。这个概念后来被称为基尔霍夫的辐射法。**早期实验**基希霍夫(Kirchhoff)的论文之一,“关于光和热的不同物体的辐射和吸收力量之间的关系”,在1860年由弗朗西斯·古斯里(Francis Guthrie)从德语转换为英语。在本文中,基尔乔夫解释说,完美的辐射吸收器也是完美的发射极。**黑体理论的发展**在接下来的几十年中,其他研究人员建立在基希霍夫(Kirchhoff)的作品上,包括路德维希·鲍尔茨曼(Ludwig Boltzmann)和马克斯·普朗克(Max Planck)。他们开发了“黑体”的概念,它是一个理想化的物体,它吸收了所有传入的辐射而无需反映任何传入的辐射。**热力学和天体物理学的进步**在20世纪,科学家继续完善他们对黑体理论的理解。阿尔伯特·爱因斯坦(Albert Einstein)对量子力学的发现,使人们对辐射及其与物质的相互作用有了更深入的了解。**现代发展**如今,研究人员正在努力开发可以模拟完美辐射吸收器的特性的新材料。这些材料在天体物理和光学等领域中有应用。注意:我保留了原始文本的结构和音调,但对其进行了改写,以使其更可读和简洁。一项开创性的实验导致发现了量子力学中的新领域,该领域深入研究了辐射下物质的行为。从定义上讲,没有材料是完美的“黑体”,但是有些像碳相似的东西已经接近。在本文中了解其复杂性,示例和特征。这种现象更多地是关于系统的特征,而不是对其进行震撼的实际辐射。黑体辐射:本质上是一种理论概念,一种完全吸收所有入射辐射的系统或物质,而无需重新传播任何一个辐射,都可以视为完美的黑体。根据热力学定律,这种系统必须发出与吸收的光一样,尽管在不同的温度和能量水平下。完美的黑色身体:理想的场景真正的黑色身体将完全黑色的身体看起来完全黑色,因为它能够吸收所有入射热辐射,而不论波长如何,而没有任何传输。但是,这种情况仍然纯粹是理论上的,因为没有任何材料能够真正体现这些特征。黑体辐射的例子和材料虽然没有完美满足黑体标准的材料,但是像石墨这样的物质在光吸收方面非常有效 - 达到96%。太阳也很近,发出了大量的阳光,但效率约为70%。其他示例包括加热物体,例如烤面包机元素和灯泡细丝。理解黑体辐射可视化吸收并以同样概率排放所有辐射的系统是具有挑战性的。但是,物理学家通常认为黑体是热平衡中理想化的空心金属盒 - 配有一个用于辐射逃生的小孔。这个思想实验有助于说明黑体辐射的概念。黑体辐射光谱:连续现象。任何加热物体发出的光谱落在黑体辐射的伞下。值得注意的是,这种现象表现出连续的特性,该特性受物体温度而不是其固有特征的控制。本质上,黑体根据温度在各种波长中排放热辐射。电子过渡和黑体辐射根据量子力学,电子从较高能量状态到较低的态度导致光的发射 - 导致黑体辐射的连续光谱。这种现象为排放提供了宝贵的见解,并在加热,照明,热成像等方面具有实际应用。黑体辐射特征:关键定律,黑体辐射的行为可以通过支配其特征的几个基本定律来解释...根据位移定律,黑体辐射曲线在与温度成正比的逆波长处达到峰值。Wien的公式λmax= b/t显示最大波长(λmax),Wein的常数(b = 2.8977*10^-3 m.k)和温度(kelvin中的t)。普朗克定律在特定温度下使用eλ= h*c*t^(-5)/cosh(h*c/λkt)-1在特定温度下使用黑体发射的光谱能密度。Stefan-Boltzmann法律显示总发射能量(E)与绝对温度成正比(T^4)。黑体辐射曲线显示,较热的身体在较短的波长处辐射峰值能量,而总能量随温度升高而增加,但在较小的波长下峰值。动物的辐射主要属于红外辐射,而肉眼看不到。然而,Max Planck提出能量以离散量(称为Quanta)来解决这一悖论。的应用包括观察灯泡在加热时从红色变为白光的细丝灯泡,并焊接金属碎片,由于温度的升高而发光不同的颜色,这也用于夜视设备中,通过将红外辐射转换为可见图像,以检测暖血动物和人。黑体辐射具有各种商业应用,包括安全性,测试,照明和供暖,因为它能够发射热能。这种现象用于许多过程中,例如电加热器,炉灶,白炽灯灯泡,太阳,星星,防盗警报,温水动物和夜视设备。Planck的辐射定律允许在任何波长和温度下计算能量强度,从而确定黑体辐射源的特性。选择此类来源取决于诸如发射率,温度,发射面积的大小,冷却时间,热身时间和调节稳定性等因素。在物理学中,理想黑体的概念导致了紫外线灾难,该灾难预测了热平衡时无限能量。偏离瑞利 - 吉恩法律的方程式,构成了量子力学的基础。