除了为迎接北京奥运会开幕而开工建设的5号线(日立制作所获得大批量订单)外,5号线是最早投入商业运营的地铁列车。另外,由于日立负责制造13号线列车的电气设备,其制造成果受到高度评价,因此也获得了5号线列车电气设备的大批量制造订单。5号线的地铁列车为“3M3T”(其中,“M”代表“动力”,“T”代表“拖车”)6辆车组,共制造了192辆。列车(车体、转向架、电缆)由长春轨道客车股份有限公司设计,该公司制造了126辆,北京地铁车辆厂制造了66辆。日立公司招标承接了 VVVF(变压变频)逆变器设备和牵引电机、辅助电源装置、空调装置、列车监控系统、驱动电机和制动系统。本报告的其余部分介绍了北京地铁 5 号线列车电气设备的技术细节 — 这些设备通过提高节能、减少维护工作和提高环保性,旨在降低环境影响。
在许多应用中,房间负荷在一天内或不同季节之间可能会有很大变化。这将导致任何特定时刻所需的冷却量有很大变化。在这种情况下,使用在部分负荷下高度节能的精密空调装置非常重要。Uniflair LE 型号(后缀为 **21、**42)是专门为部分负荷环境设计的;这些型号配备两个在同一回路上并行运行的压缩机,可在单个制冷回路上提供两级冷却。由于蒸发器盘管的表面积(设计为两个压缩机的容量)是固定的,因此运行中的单个压缩机(图 B)可受益于“双倍尺寸”蒸发器盘管的可用性。这种冷却效果的最大化可提高部分负荷效率和部分负荷 COP(性能系数)。为了比较不同设备的部分负荷效率,我们开发了一些参数,这些参数考虑了 25%、50%、75% 和 100% 负荷下的 COP 并计算加权平均值。这些参数(IPLV:综合部分负荷值、EMPE:季节性能源效率比和 SEER:季节性能源效率比)在权重和计算不同 COP 的运行条件方面有所不同,但它们都遵循相同的公式。
摘要 — 将大量分布式能源 (DER) 整合到电网中需要一种可扩展的电力平衡方法。我们将电力平衡问题表述为一个前瞻优化问题,由基于模型预测控制 (MPC) 框架的配电系统聚合器按顺序解决。解决大规模前瞻控制问题需要正确配置控制步骤。在本文中,为了解决大规模控制问题,我们提出了一种可变的时间粒度,其中靠近当前控制步骤的控制时间步骤具有更精细的分辨率。聚合器目标包括最大化电力生产收入并最小化电力购买费用、可再生能源削减以及能源存储和电动汽车 (EV) 充电站的里程成本,同时满足系统容量和运营约束。控制问题被表述为混合整数线性规划 (MILP),并使用 XpressMP 求解器进行求解。我们进行了模拟,考虑了由 2507 个设备(可控 DER)组成的大型配电网络的铜板表示,包括可削减的光伏 (PV)、储能电池、电动汽车充电站以及带有供暖、通风和空调装置 (HVAC) 的建筑物。我们展示了所提出的方法在交互式管理 DER 以实现最大能源交易利润和本地供需电力平衡方面的有效性。最后,我们证明了所提出的方法在计算时间方面优于其他基准控制器,同时不影响运行性能。索引术语 — 配电系统、DER、电网整合、电力市场、模型预测控制、电力平衡。