低空导航和战术训练在超过 400 节(通常为 450-550 节)的空速下进行。 卢克航空通常以 500-1000 英尺 AGL 飞行,但根据航线结构可以超过 1,500 英尺 AGL。只有具有四位标识符的航线不包含高于 1,500 英尺 AGL 的航段(即IR1206、VR1207) 非参与飞机不禁止飞越 MTR。但是,在穿越或靠近 MTR 飞行时应格外警惕。 大多数 MTR 都是 VR 航线,军用飞机在这些航线上以 VFR 飞行,因此不受 ATC 控制 分区图上仅显示航线中心线。走廊通常宽 5-10 海里,但中心线两侧可达 20 海里 普雷斯科特 FSS 可能能够提供有关实时路线活动的信息
如果拍摄照片的飞行员保持原位并立即将总距减小到最低位置,他可能已经成功完成了紧急迫降。这是一个很好的程序,因为在自转时,降低机头以获得空速会减少作用在旋翼盘上的空气量并进一步降低旋翼转速。让直升机垂直下降会导致更多的空气通过旋翼盘向上移动并恢复一些旋翼转速。然后,飞行员利用旋翼转速中额外储存的动能来减慢直升机在接触地面之前的下降速度。这是通过在接触地面之前立即拉全总距来实现的,以产生短暂的升力爆发。时机至关重要,这样直升机才能以最低速度接触地面,从而提高乘客的生存能力。
1.类型设计定义 ................................................................................................................................ 11 2.描述 .............................................................................................................................................. 11 3.设备 ............................................................................................................................................. 11 4.尺寸 ............................................................................................................................................. 11 5.发动机 ............................................................................................................................................. 11 6.辅助动力装置 ............................................................................................................................. 11 7.螺旋桨 ............................................................................................................................................. 12 8.流体(燃油、油、添加剂、液压) ............................................................................................. 12 9.流体容量 ............................................................................................................................................. 12 10.空速限制 ...................................................................................................................................... 13 11.飞行包线 ...................................................................................................................................... 13 12.操作限制 ...................................................................................................................................... 13 13.最大认证质量 ...................................................................................................................... 14 14.重心范围 ............................................................................................................................. 14 15.基准 ...................................................................................................................................... 14 16.平均气动弦 (MAC) ............................................................................................................. 14 17.调平方法 ............................................................................................................................. 14 18.最低飞行机组........................................................................................................... 14 19.最低客舱乘务员人数 ................................................................................................................ 14 20.最大座位数 ................................................................................................................ 15 21.行李舱/货舱 ................................................................................................................ 15 22.机轮和轮胎 ...................................................................................................................... 15 23.ETOPS ................................................................................................................................ 15
任务 2:是否可以选择一组手动控制偏差(和油门设置)来稳定机身 x 轴空速分量 u =13 m s − 1 的开环直线、水平和稳定飞行?如果可以,将控制信号(标准化)设置记录为微调,记录在初始条件向量以及低级控制块(u E 、u A 、u R )和高级控制块(u T )中。这些将作为下一步控制器设计的微调偏差。蓝色的配平用户输入块采用标准化值,即 ∈ [ − 1 , 1]。不必担心获得完美的配平 - 因为我们稍后可能会对其进行改进。进一步记录稳定状态俯仰角 θ - 将此量输入高级控制块的“θ 配平”用户输入源以及“姿态模式开关”左侧的“用户姿态设定点”块。
滑翔机在空气动力学研究中的另一个非常重要的用途是测量飞行性能。有几种方法可以确定飞机的滑翔比,其中比较法最准确且最省时。通过使用经过精确校准的滑翔机,可以准确知道滑翔极线曲线,并与另一架作为测量测试品的滑翔机编队飞行,可以通过测量不同空速下的相对垂直速度来确定未知的极线曲线。因此,理想情况下,任何大气扰动都会被抵消,并且可以在 2-5 次飞行中非常准确地确定极线曲线。Ka6E、Cirrus 和 DG300/17 用于这些测量,使用摄影测量法来确定两架飞机之间的相对垂直速度——GPS 随 DG300/17 引入,并继续用于 Discus-2c DLR,现在使用移动基准差分 GNSS 技术。
民用航空医学研究所 (CAMI) 研究实验室研究了单个飞行员驾驶超轻型喷气机 (VLJ)(也称为入门级喷气机 (ELJ))进行的任务和工作量管理。14 名获得认证的赛斯纳奖状野马 (C510-S) 飞行员在 CAMI 的赛斯纳奖状野马 ELJ 5 级飞行训练设备中,按照仪表飞行规则 (IFR) 进行了一次涉及高工作量管理的双航段实验飞行。其中八名飞行员是野马的所有者兼操作员,另外六名飞行员驾驶奖状野马作为其专业飞行员工作的一部分。除了 Cessna Citation Mustang 模拟器外,数据收集还包括感知工作量的即时自我评估、NASA 任务负荷指数 (TLX) 工作量测量、研究人员观察、最终汇报访谈和三份问卷:驾驶舱设置偏好、人口统计和自动化体验与感知。为了便于分析,飞行巡航部分的主要高工作量任务分为四个事件。参与者毫无困难地完成了四个事件中约三分之二的任务。虽然所有参与者在所有四个高工作量事件中都犯了各种错误(例如,读回错误、空速违规),但大多数错误与整体任务成功没有直接关系。我们确实发现,仅在第一个事件中,经验时间对任务执行成功有显著影响。我们还发现,使用 G1000 航空电子设备时出现某种类型的错误是大多数参与者难以完成一项或多项任务的根本原因。所有参与者在所有四个高工作量事件中都犯了各种错误(例如,读回错误、空速违规),但大多数错误与整体任务成功没有直接关系。讨论了研究结果的含义,并确定了参与者展示的我们称之为“最佳实践”的技术。还提供了自动化使用的推荐策略以及任务超载和工作量崩溃的对策。17.关键词 18.分布声明
“一切正常!”试飞员在飞机对讲机中呼叫,同时将测试的 Chinook 直升机稳定在所需的空速、爬升率和倾斜角参数范围内。这是新加坡空军 (RsAF) Chinook 直升机首次用直升机吊运陆军轻型攻击车 (LsV) 的飞行试验。试飞员必须飞行并将飞机性能和参数保持在非常严格的公差范围内,而试飞员则忙于扫描 LsV 的视频记录以评估其稳定性,同时仔细聆听机上机组专家对飞行中负载行为的连续评论。快进一年后,在 2016 年巴耶利峇空军基地举行的 RsAF 开放日上,首次展示了空运 LsV 的新功能。可能相对不为人知的是,这些只是经过大量飞行测试后交付给 RsAF 的一些能力。在过去的三十年里,飞行测试在 RsAF 新功能的整合、测试和交付中发挥了至关重要的作用。
摘要:研究了混合助剂和配方杀菌剂在空中施用条件下对喷雾雾化和田间移动的影响。进行了高速风洞测试,以确定所选处理方法产生的液滴大小。这些处理方法包括“空白”(水加非离子表面活性剂)以及另外五种含有配方杀菌剂的溶液,其中四种含有额外的助剂。风洞测试使用扁平扇形喷嘴和为田间试验选择的操作参数(喷雾压力、喷嘴方向和空速)测量液滴大小。然后在田间评估这些处理方法的幅内和顺风沉积情况,并使用测量结果的质量平衡将每种配方产品处理方法与参考处理方法进行比较。风洞实验结果表明,配方产品混合罐产生的液滴大小与水和非离子表面活性剂“空白”参考相比有显著差异
国防部对参与 CAS 任务的部队的训练计划进行了评估,但 GAO 确定了国防部可以在两个方面改进工作。首先,由于缺乏用于跟踪训练数据的集中系统以及没有指定实体来监控全军的训练,陆军和海军陆战队尚未系统地评估为提供目标信息的地面观察员进行定期训练的有效性。其次,2017 年至 2019 年间,使用合同飞机进行训练的情况大幅增加,但国防部尚未全面评估使用非军用合同飞机训练空中管制员进行 CAS 的情况(见图)。GAO 发现,美国军用飞机和合同飞机之间的差异(例如空速)可能导致飞机在某些类型的训练活动中的能力不一致。如果不对 CAS 训练进行全面评估,国防部就无法保证其部队已准备好安全有效地执行 CAS 任务。
详细信息:AN/SSQ-62E DICASS 通常用于在通过 DIFAR 或其他方式定位水下目标后,确定其位置。与之前的 AN/SSQ-62 系列浮标不同,AN/SSQ-62E 是全数字化的,并且具有增强的命令功能选择 (CFS) 功能,使操作员可以在抛弃浮标后控制浮标的 RF 和深度设置,大大增强了 SSQ-62E 在大型油田中的实用性。作为对早期 SSQ-62 系列的进一步增强,其主动声纳也是命令激活的,可以命令其在四个命令可选频率(6.5、7.5、8.5、9.5 kHz)中的任何一个上进行传输。深度设置也可以通过 CFS 深度设置(50、90、150、300、400、1,500 或 2,500 英尺)进行主动管理,使浮标在公海和沿海环境中同样适用。AN/SSQ-62E 的使用寿命为 60 分钟。它可以在最高 370 节的空速和 350-30,000 英尺的高度部署。
