HGCDTE APD检测器模块电信是在CEA/LETI上开发的,用于大气刺激和自由空间光学(FSO)。开发是由可以在每个检测器模块中调整的通用子组件的设计和制造驱动的,以满足每个应用程序的特定检测器要求。从目前为大气激光雷达开发的探测器模块所设定的挑战详细介绍了此类子组件的优化,该挑战在AIRBUS的R&T CNES项目的范围内以及H2020 Project holdon的R&T项目范围以及FSO,以及在ESA项目的范围内与Mynaric Laserc的lasercom lasercom gmbhhs of airbus和FSO。最近已将两个检测器模块传递到空中客车DS进行广泛的LIDAR仿真测试。表明,与先前开发的大面积检测器相比,输入噪声,NEP = 10-15fw/√Hz(5个光子RMS)已减少了三分,尽管带宽已增加到180 MHz,以响应高空间深度分辨率的要求。在发现短光脉冲后200 ns时,时间延迟为10 -4,这与诸如测深分析之类的激光雷达应用兼容。
神经形态工程已成为开发大脑启发式计算系统的一种有前途的途径。然而,传统的基于电子人工智能的处理器经常遇到与处理速度和散热相关的挑战。作为一种替代方案,已经提出了此类处理器的光学实现,利用光的固有信息处理能力。在光学神经形态工程领域探索的各种光学神经网络 (ONN) 中,脉冲神经网络 (SNN) 在模拟人脑的计算原理方面表现出显著的成功。光学 SNN 基于事件的脉冲特性提供了低功耗操作、速度、时间处理、模拟计算和硬件效率方面的功能,这些功能很难或不可能与其他 ONN 类型相匹配。在这项工作中,我们介绍了开创性的自由空间光学深度脉冲卷积神经网络 (OSCNN),这是一种受人眼计算模型启发的新方法。我们的 OSCNN 利用自由空间光学来提高功率效率和处理速度,同时保持模式检测的高精度。具体而言,我们的模型在初始层采用 Gabor 滤波器进行有效特征提取,并利用使用现成光学元件设计的强度到延迟转换和同步器等光学元件。OSCNN 在基准数据集(包括 MNIST、ETH80 和 Caltech)上进行了严格测试,显示出具有竞争力的分类准确性。我们的比较分析表明,OSCNN 仅消耗 1.6 W 的功率,处理速度为 2.44 毫秒,明显优于 GPU 上的传统电子 CNN,后者通常消耗 150-300 W,处理速度为 1-5 毫秒,并且与其他自由空间 ONN 相媲美。我们的贡献包括解决光学神经网络实现中的几个关键挑战。为了确保组件对准的纳米级精度,我们提出了先进的微定位系统和主动反馈控制机制。为了提高信号完整性,我们采用了高质量的光学元件、纠错算法、自适应光学和抗噪声编码方案。通过设计高速光电转换器、定制集成电路和先进的封装技术,优化了光学和电子元件的集成。此外,我们还利用高效、紧凑的半导体激光二极管,并开发了新颖的冷却策略,以最大限度地减少功耗和占地面积。
自由空间光学(FSO)通信的最新进步正在使卫星微型化和数据传输速率取得突破。Cubeisl激光通信终端(LCT)是德国航空航天中心(DLR)的开发项目,将在2025年推出后以100 Mbps的形式展示100 Mbps的卫星间链接,并以1 Gbps的链接展示。该技术旨在将自己确立为有效的立方体通信的尖端解决方案,从而提供高数据速率。为了验证其能力,该终端在143公里的FSO连接中进行了严格的测试,在加那利群岛的La Palma和Tenerife之间进行了严格的联系。欧洲航天局的光学地面站模仿了下行链路,而两个LCT之间的通信模拟了卫星间链接。本文概述了立方体LCT的当前发育阶段,并提出了其水平链接演示的结果。
在 CACI International Inc (NYSE: CACI),我们拥有 23,000 名才华横溢、充满活力的员工,他们始终保持警惕,提供独特的专业知识和差异化技术,以应对客户在国家安全和政府现代化方面面临的最大挑战。我们是一家品格优良、不断创新、长期追求卓越的公司。我们的文化推动着我们的成功,并让我们成为《财富》全球最受赞赏的公司。CACI 是《财富》1000 强企业、罗素 1000 指数和标准普尔中型股 400 指数的成员。欲了解更多信息,请访问 caci.com。
-Kuljer(1)Joseph Montri(2),Philippe Perrault。 AnaëlleMaho(4),西蒙·莱夫(Simon Leveque)(4)
- 测试的组件应完全代表为任务提供的设备。如果组件有任何影响性变化,则应通过新的资格认证进行覆盖。分析每项修改以确定所需的增量资格认证,例如芯片环氧树脂的变化,必须至少重新测试振动、冲击和热循环。但是,不需要辐射测试,因为它不会影响环氧树脂的坚固性。有时,资格认证基于类似组件,但不能 100% 代表所选参考,例如,资格认证期间测试的设备的封装与任务组件的封装不同。或者辐射必须在不同的芯片上进行。在所有这些情况下,也需要增量资格认证。可接受的相似性水平也是在太空环境中激活的特定故障机制的函数,这对于每个光电部件子组都是不同的,并且可能导致特定的额外资格认证测试。 - 测试水平应涵盖任务环境。 - 光电性能的验收标准应符合任务要求。
摘要 - 我们建议使用光子晶体表面发射激光器(PC-SELS)提出并演示自由空间光学(FSO)。与其他类型的常规半导体激光器不同,例如伸向边缘激光器(EEL)和垂直腔表面发射激光器(VCSEL),PCSELS,PCSELS在同一时间内实现了更大的区域单模式相干激光,并且这种独特的功能具有高功率(> WATT)和无镜头的操作。迄今为止,这些优点已被认为正在改变游戏,尤其是在光检测和范围(LIDAR)和激光处理应用程序中。在这项工作中,我们表明FSO通信也可以从PCSEL的这些优势中受益;更具体地,包括低功率半导体激光器,光学镜头和基于纤维的放大器的传统发射器可以用单个PCSEL代替。由于纤维放大器通常由笨重的组件组成,并且转化率较低,因此PCSEL可以提供更多的空间和节能解决方案。此外,直接从大区块单模PCSEL获得的窄光束发散角还可以消除发射机侧透镜系统的需求。为了实验验证这些潜在的优势,我们根据PCSELS进行了FSO传输实验,并使用500- m PCSEL在1.1 m上成功传输了480-MHz和864-MHz正交频次频施加频型(OFDM)信号(OFDM)信号。我们认为,PCSEL在FSO通信中打开了新的可能性和选择。
摘要 - 基于激光技术的免费空间光学(FSO)通信是下一代超高数据速率链接从卫星到地面和反之亦然的有前途的机会。为了调查并证明空间对地面激光链路的可行性,我们在慕尼黑大学的研究中心空间(UNIBW M)进行了一个小型卫星任务。此任务的核心是非对位轨道(NGSO)中的卫星雅典娜1。除其他有效载荷外,该卫星配备了光学激光终端,用于高速数据向上和下行链路。地面段将在德国Neubiberg的Unibw M校园内组成一个光学地面站(OGS)。在本文中,我们提供了计划的FSO通信实验的概述,尤其是介绍和描述OGS的设置。OGS目前正在建设中,计划全面运营能力为2023年底。索引术语 - 激光通讯,光学地面站,自由空间光学通信,小型卫星任务
1885 年发明的电报是无线技术的第一个例子。随着时间的推移,技术也在不断变化。目前,每个用户都希望拥有高速网络,而 RF 网络无法提供这种网络。因此,我们必须寻求替代技术,如光纤,以满足我们的需求。近年来,光传输越来越受到关注 [1]。信息通过光传输以无线方式传输,光传输也称为自由空间光学或光无线通信 (FSO)。FSO 是一种允许我们通过大气通道发送光形信号的技术。接收器端的 PD(光电二极管)接收由激光或 LED 产生并通过大气发送的光信号。FSO 通常通过红外光谱发送信息信号。尽管大气环境对红外波长的影响较小,但由于大气分子活动,某些范围会发生扭曲 [2]。最古老的方法之一,自由空间光学,可以追溯到公元七世纪。当时,罗马人和希腊人更倾向于利用阳光进行通信 [3]。接下来将介绍火、烟、信号旗和其他点对点通信技术的使用 [4]。其中一种
摘要。多层光转换(MPLC)提供了自适应光学器件的替代方法,用于将湍流腐败的自由空间光束耦合到单模光纤或波导中。最近发布的测试结果表明,这种转换设备比自适应光学系统具有可比性或更好的性能。为了更好地了解设备特性,进行了模拟,以量化不同湍流强度和Hermite数量的功率损失 - 转换过程中使用的高斯模式。特定的病例研究是由美国陆军研究实验室开发的原型自由空间激光通信系统。拟议的仿真和统计结果报告了。还讨论了MPLC后梁功率组合器的分析。©作者。由SPIE在创意共享归因4.0国际许可下出版。全部或部分分发或复制此工作需要完全归因于原始出版物,包括其DOI。[doi:10.1117/1.oe.61.11.116104]