近年来,太空探索工作越来越集中于对火星和月球等行星和卫星的表面探索。这是通过使用流浪者来实现的,流浪者能够跨天体旅行并进行研究活动。但是,完成任务可能具有挑战性,必须及时解决问题,以避免丢失Sciminific Data甚至Rover本身。鉴于与火星(Olson,Matthies,Wright,Li,&di)的有限通信能力,必须迅速检测到异常,因为没有现场人工干预的可能性。要面对这个问题,NASA分别开始开发其漫游者的物理双胞胎,例如对好奇心和毅力的乐观情绪(Cook,C。,Johnson和Hautalu-Oma)(Castelluccio,)。同时,NASA和西门子研究了一个好奇的数字双胞胎,以使用SIM-DIOSOTOPE热电学发电机(MMRTG)使用SIM-Center 3D(M.I.T.,M.I.T.,)分析和解决由多损耗ra-Dioasotope热电学发电机(MMRTG)引起的散热问题。同样,欧洲航天局
摘要在整个船舶设计过程的早期阶段开发的船舶推进系统的建筑对船舶的整体设计和性能产生了很大的影响。到达最后一艘船舶保护架构的设计空间探索可能是一个相当复杂的过程,用于高性能“组合”的“船舶推进系统”,旨在实现多个,经常相互冲突的设计目标。本文提出了一个基于基于模型的“技术经济和环境风险评估”(TERA)方法的设计空间探索过程的新过程,该方法是使用混合的“多重标准决策制定”(MCDM)程序执行的,以从竞争的推进系统中选择构建设计空间的竞争推进系统中的解决方案。该过程利用了从开发模型的性能模拟产生的性能数据的组合,以及基于比较的专家意见的指标,用于船舶设计过程中无法选择“妥协解决方案”的信息。本文包括一个说明性的示例,说明了拟议过程在设计空间探索的拟议过程中,用于合并的推进系统体系结构。
Solvay是一家科学公司,其技术为日常生活的许多方面带来了好处。在64个国家 /地区拥有超过23,000名员工,债务人,想法和要素可以重塑进步。该小组试图为所有人创造可持续的共享价值,特别是通过其Solvay One Planet路线图围绕三个支柱制作:保护气候,保护资源并促进更好的生活。该集团的创新解决方案有助于在房屋,食品和消费品,飞机,汽车,电池,智能设备,医疗保健应用,水和空气净化系统中发现的更安全,清洁剂和更可持续的产品。成立于1863年,今天的Solvay在其绝大多数活动中排名全球前三家公司,并在2020年提供了90亿欧元的净销售额。solvay在布鲁塞尔和巴黎(Solb)上列出。在www.solvay.com上了解更多信息。
氮化物材料中的氮掺杂是改善材料特性的一种有希望的方法。的确,GESBTE相位变化合金中的N掺杂已证明可以极大地提高其无定形相的热稳定性,这是确保最终相变存储设备的数据保留所必需的。尽管建议这种合金中的N掺杂导致GE-N键的优先形成,但有关键的进一步问题,尤其是SB-N和TE-N,并且结构排列尚不清楚。在本文中,我们介绍了使用大量的N含量从0到50 at at 50 at,我们介绍了沉积的元素GE,SB和TE系统及其氮化物(即Gen,SBN和10合金)的研究。%。通过傅立叶变换红外和拉曼光谱法研究了AS沉积合金。我们确定与GE-N,SB-N和TE-N键形成相关的主动振动模式,强调了N融合对这些元素系统结构的影响。我们进一步定性地将Gen,SBN和十个实验光谱与相关理想氮化物结构的“从头开始”进行了比较。最后,对氮化元素层的分析扩展到N掺杂的GESBTE合金,从而在记忆技术中采用的此类三元系统中对氮键有更深入的了解。
总结发生了严重事故时,必须预测,必须预测,必须预测,在高温下,必须预测,在高温下,必须预测由化学相互作用形成的复合混合物的相位平衡和热力学特性。calphad是开发热力学数据库的合适方法,以研究包含大量元素的复杂材料。这项工作将介绍新的高级计算工具:(i)B。Sundman开发的开放calphad软件(www.opencalphad.com),这是通过Gibbs Energy Minimiation进行热力学计算的开源代码; (ii)自2005年以来在CEA上开发的燃料基碱数据库,该数据库允许对复杂的rioum组成进行计算; (iii)TAF-ID(高级燃料的热力学 - 国际数据库)数据库,该数据库是一个OECD/NEA项目(www.oecd-nea.org/science/taf-id),于2013年启动,旨在开发一个在加拿大国家,北方国家和纽约市之间的国际协作框架的核燃料材料的热力学数据库。
摘要 — 在过去十年中,近似计算 (AxC) 已被研究作为一种可能的替代计算范式。它已被用于降低传统容错方案(如三重模块冗余 (TMR))的开销成本。最近的提议之一是四重近似模块冗余 (QAMR) 的概念。QAMR 降低了相对于传统 TMR 结构的开销成本,同时保证了相同的容错能力。在本文中,我们提出了一种新的近似技术来实现 QAMR,并进行了设计空间探索 (DSE) 以找到 QAMR 帕累托最优实现。此外,我们为所提出的架构提供了一个新的多数表决器的设计。实验结果表明,对于 FPGA 和 ASIC 技术,分别有 85.4% 和 97% 的电路可以找到与 TMR 对应物相比实现面积和/或延迟增益的 QAMR 变体。索引词 — 容错;纠错;三重模块冗余;TMR;近似计算;四重近似模块冗余;QAMR;数字电路;近似计算
摘要 — 使资源有限的机器人能够执行计算密集型任务(例如移动和操作)是一项挑战。本项目提供了全面的设计空间探索,以确定适合基于模型的控制算法的最佳硬件计算架构。我们对通用标量、矢量处理器和专用加速器中的代表性架构设计进行了分析和优化。具体来说,我们使用内核级基准和端到端代表性机器人工作负载来比较标量 CPU、矢量机和领域专用加速器。我们的探索提供了定量的性能、面积和利用率比较,并分析了这些具有代表性的不同架构设计之间的权衡。我们证明架构修改、软件和系统优化可以缓解瓶颈并提高利用率。最后,我们提出了一种代码生成流程,以简化将机器人工作负载映射到专用架构的工程工作。
设计体系结构说明类DesignConfig(new Constellation(Nocparams(topology =(),ChannelParamgen =(),RoutingRelation =())…)++ new Rockettile()++ new L2Banks()
纳米式设备为人类血液中的流动引导定位提供了引物。这种本地化允许将感知事件的位置分配给事件本身,从而沿着早期和精确的诊断方面提供益处,并降低了成本和侵入性。流引导的定位仍处于基本阶段,只有少数针对问题的作品。尽管如此,对解决方案的性能评估已经是以一种非标准化的方式进行的,通常是按单个性能指标进行的,并且忽略了在这样的规模(例如Nanodevices的Lim-Is-Ised Energy)中相关的各个方面,并且对于这种挑战性的环境(例如,在B-Body Thz peragation In-Body Thz Propagation中极端衰减)。因此,这些评估的现实主义水平较低,不能客观地进行比较。为了解决这个问题,我们说明了情景的环境和规模相关的特点,并评估了沿一系列异构性能指标(例如本地化的准确性和可靠性)沿着一组异构性能指标的两种最先进的流动定位方法的性能。