轨道数据消息 (ODM):星历表消息 (OEM)、综合消息 (OCM) O/O 联系信息 OCM;可以使用空间数据标准用户配置文件消息 O/O 卫星特性 ODM;+ 卫星目录消息以获取更多信息 O/O 机动计划 ODM:轨道参数消息 (OPM) 和 OCM 卫星标识 ODM:可以使用自由文本字段 部署时间表 ODM:OCM 包括部署时间字段 发射轨迹 ODM 卫星特性数据 ODM:OCM 或可在标准可用时合并到 LDM DOC/商业状态向量 ODM:OPM DOC/商业元素集 ODM:OMM 再入评估 再入数据消息 (RDM)
• Architecture allow easy extension to additional (non-standard) messages • Publish messages that contain all rows at once: • Derive from StampedTopicParser • E.g., PointCloud2 • Publish message row-by-row: • Derive from SingleElementParser • E.g., PointStamped , Pose
1。从数据所有者那里获取数据2。消化数据以了解包括的内容3。将数据转换为机器可读格式4。质量保证和质量控制5。在机器学习算法中使用6。重复前面的步骤,直到满足所有数据需求7。策划数据集和ML输出的传播
– 奥地利空间局 (ASA)/奥地利。 – 比利时科学政策办公室 (BELSPO)/比利时。 – 中央机械制造研究院 (TsNIIMash)/俄罗斯联邦。 – 中国卫星发射和跟踪控制总院、北京跟踪和通信技术研究所 (CLTC/BITTT)/中国。 – 中国科学院 (CAS)/中国。 – 中国空间技术研究院 (CAST)/中国。 – 英联邦科学与工业研究组织 (CSIRO)/澳大利亚。 – 丹麦国家空间中心 (DNSC)/丹麦。 – 航空航天科学和技术部 (DCTA)/巴西。 – 电子和电信研究院 (ETRI)/韩国。 – 欧洲气象卫星应用组织 (EUMETSAT)/欧洲。 – 欧洲通信卫星组织 (EUTELSAT)/欧洲。 – 地理信息和空间技术发展局 (GISTDA)/泰国。 – 希腊国家空间委员会 (HNSC)/希腊。 – 希腊空间局 (HSA)/希腊。 – 印度空间研究组织 (ISRO)/印度。 – 空间研究所 (IKI)/俄罗斯联邦。 – 韩国航空宇宙研究院 (KARI)/韩国。 – 通信部 (MOC)/以色列。 – 穆罕默德·本·拉希德航天中心 (MBRSC)/阿拉伯联合酋长国。 – 国家信息和通信技术研究所 (NICT)/日本。 – 国家海洋和大气管理局 (NOAA)/美国。 – 哈萨克斯坦共和国国家空间局 (NSARK)/哈萨克斯坦。 – 国家空间组织 (NSPO)/中国台北。 – 海军空间技术中心 (NCST)/美国。 – 荷兰空间办公室 (NSO)/荷兰。 – 粒子与核物理研究所 (KFKI)/匈牙利。 – 土耳其科学技术研究理事会 (TUBITAK)/土耳其。 – 南非国家航天局 (SANSA)/南非共和国。 – 空间与高层大气研究委员会 (SUPARCO)/巴基斯坦。 – 瑞典空间公司 (SSC)/瑞典。 – 瑞士空间办公室 (SSO)/瑞士。 – 美国地质调查局 (USGS)/美国。
近几年来,地理空间数据的重要性和普及程度显著提高。从州和联邦政府内部环境正义制图工具的增长,到疫情期间显示 COVID-19 流行程度和发病率的地图的激增,地理空间数据和制图已成为内部决策和外部沟通与推广的关键工具。尽管通过提高创建和访问这些数据的技术的可访问性,消费者和利益相关者获得了巨大的收益,但并非所有地理空间数据都是平等的,也并非所有地理空间数据都能满足政府应用和公共服务的要求。地理空间数据的实用性日益提高,其作为政府决策的重要组成部分的认可为改善地理空间数据的投资、开发和治理创造了重要机会,从而增加了对高质量、权威地理空间数据层的访问。
现代空间领域感知的挑战和目标与几十年前人们首次发射卫星时不同。但是,我们仍然依赖为反应式目录维护而开发的数据模型,其目的是提供每颗卫星的最新轨道更新。在本文中,我们提出了现代化的空间数据模型,重新定义时间和数据表示,以实现主动和机器辅助决策。目录更新的平面列表不足以实现这一点,因为它不代表每颗卫星随时间的行为历史,而是提供传感器集合的历史记录。此外,它没有提供表示多个同时当前或未来假设所需的时间构造,这在评估或预测表现为非确定性轨道机动的卫星动作时很重要。无法用清晰的数学结构表示这种现实的卫星行为是机器自动评估、检测和预测轨道动作的障碍。
随着民用和军用领域对地月空间的兴趣日益增加,对地月空间物体的空间域感知 (SDA) 的需求也随之增加。地月空间的太空 SDA 具有挑战性,部分原因是难以准确估计观测卫星的位置,而准确估计是有效执行 SDA 任务的必要条件。使用多颗配备低保真度设备的观测卫星有助于缓解这些问题,因为可以将方差较大的多个数据集聚合在一起,以实现与较少高质量测量系统相同或更高的精度。地月周期轨道用于观测星座,目标航天器位于 L1 Halo 轨道上。所有轨道均使用圆形限制三体问题 (CR3BP) 建模。系统工具包 (STK) 用于计算轨道几何形状和角度 - 仅提取测量值以模拟带有光学传感器的观测航天器。然后利用扩展卡尔曼滤波器处理测量数据以估计目标航天器的位置。分析重点是比较不同数量的观测航天器的有效性。模拟结果发现,使用低保真度星座可以达到高保真度星座所达到的性能。
– 奥地利空间局 (ASA)/奥地利。 – 比利时科学政策办公室 (BELSPO)/比利时。 – 中央机械制造研究院 (TsNIIMash)/俄罗斯联邦。 – 中国卫星发射和跟踪控制总院、北京跟踪和通信技术研究所 (CLTC/BITTT)/中国。 – 中国科学院 (CAS)/中国。 – 中国空间技术研究院 (CAST)/中国。 – 英联邦科学与工业研究组织 (CSIRO)/澳大利亚。 – 丹麦国家空间中心 (DNSC)/丹麦。 – 航空航天科学和技术部 (DCTA)/巴西。 – 电子和电信研究所 (ETRI)/韩国。 – 欧洲气象卫星应用组织 (EUMETSAT)/欧洲。 – 欧洲通信卫星组织 (EUTELSAT)/欧洲。 – 地理信息和空间技术发展局 (GISTDA)/泰国。 – 希腊国家空间委员会 (HNSC)/希腊。 – 希腊空间局 (HSA)/希腊。 – 印度空间研究组织 (ISRO)/印度。 – 空间研究所 (IKI)/俄罗斯联邦。 – 韩国航空宇宙研究院 (KARI)/韩国。 – 通信部 (MOC)/以色列。 – 穆罕默德·本·拉希德航天中心 (MBRSC)/阿拉伯联合酋长国。 – 国家信息和通信技术研究所 (NICT)/日本。 – 国家海洋和大气管理局 (NOAA)/美国。 – 哈萨克斯坦共和国国家空间局 (NSARK)/哈萨克斯坦。 – 国家空间组织 (NSPO)/中国台北。 – 海军空间技术中心 (NCST)/美国。 – 荷兰空间办公室 (NSO)/荷兰。 – 粒子与核物理研究所 (KFKI)/匈牙利。 – 土耳其科学技术研究理事会 (TUBITAK)/土耳其。 – 南非国家空间局 (SANSA)/南非共和国。 – 空间与高层大气研究委员会 (SUPARCO)/巴基斯坦。 – 瑞典空间公司 (SSC)/瑞典。 – 瑞士空间办公室 (SSO)/瑞士。 – 美国地质调查局 (USGS)/美国。
地理信息是教育部(ED)的基础。当国会于1867年(后来被称为教育办公室)创建该部门时,其首要任务是评估和报告教育土地赠款的地位,这些土地赠款已被联邦政府作为支持当地教育的资源,以信任新成立的州。一个世纪后,国会发起了1965年具有里程碑意义的基础和中学教育法,该法为来自低收入家庭的儿童浓度高的地理区域提供了补充资金。已有50多年的历史,办公室和教育部取决于地理定义和数据,以有效地分配联邦资金并监督联邦计划。地理信息对于理解政策问题,例如获得数字基础设施,教师劳动力供应的差异,经济和种族隔离以及其他影响地方,州和联邦教育决策的关键问题也至关重要。在教育方面,地理很重要。