(1)带有无机电解质的锂初级电池通常是剧毒(TOX 4),如果吸入气体(TLV:5ppm),则可能是致命的。带有无机电解质的锂主电池本质上也具有爆炸性,并且具有TNT等效性(例如,具有无机电解质的一磅锂主电池等同于一磅TNT)。(2)带有有机电解质的锂主电池通常具有腐蚀性(TOX 2)。一些带有有机电解质的锂主电池还表现出爆炸性的行为,以不平衡的过度过度降低到逆转状态,如果电池经历外部短裤,也可能发生。(3)在虐待条件下,锂原电池可以发泄,爆炸和燃烧,从而释放出剧毒和腐蚀性材料。有关这些电池的有毒和爆炸性行为的更多信息,请参考ESTA-OP-0-49,“锂电池处理器认证”和JSC 20793,“机组人员太空车辆电池安全要求”。 (4)可以从有机或无机电解质中释放的一些有毒,易燃或腐蚀性成分是二硫化碳,一氧化碳,氢化氧化物,盐酸,盐酸,氢核酸,氢酸,氢酸,氢,氢,甲烷,甲烷,甲烷,甲烷,甲基甲基甲基二氧化物,硫化硫化剂,硫化剂,硫化剂。应谨慎行事,以避免吸入TOX 4电解质蒸气和气体。
Robyn Gatens主任,国际空间站NASA总部Robyn Gatens女士是NASA总部的人类勘探和运营宣教局国际空间站(ISS)的董事。她还是环境控制和生命支持(ECLSS)和机组人员健康和绩效系统的机构高级专家。作为国际空间主管,盖滕斯(Gatens)担任机构级别的空间站计划的战略,政策,整合和利益相关者参与,包括使用该站进行研究和技术示范,包括为NASA的Artemis任务提供支持,以及通过实现成功,长期的长期私人私人领域的低地球轨道(LEO)的活动来确保美国在低地球轨道(LEO)中的持续存在。在她在美国国家航空航天局(NASA)的35年中,加滕斯(Gatens)领导了人类太空飞行任务的生活支持和居住系统的发展和管理。她还领导了代理机构的战略和预算计划,以将未来深空探索任务所需的这些居住系统技术成熟,并使用ISS作为示范测试台。她于1985年在阿拉巴马州亨茨维尔的马歇尔太空飞行中心开始了NASA职业生涯。她在马歇尔(Marshall)担任过各种领导职务,包括猎户座航天器机组人员支持和热系统的经理,然后于2012年转移到NASA总部。gatens是NASA杰出领导力和出色成就奖章的获得者,并拥有佐治亚理工学院的化学工程学士学位。
研究 • 永久机组人员驻留 • 进入太空真空 • 外部(空间)和内部研究 • 自动化、人工和机器人操作的研究 • 暴露于热层 • 高海拔和高速度下的地球观测 • 可居住的环境控制环境 • 几乎连续的数据和通信链接到任何地方
在我们探索地球以外的探索时,宇航员可能会面临因电离辐射引起的有害DNA损害的风险。双链断裂是一种可以通过两种主要的细胞途径来修复的DNA损伤:非同源末端连接,在此期间可以在断裂部位添加插入或插入,并同源重组,其中DNA序列通常保持不变。先前的工作表明,空间条件可能会影响DNA修复途径的选择,从而有可能使太空旅行期间辐射增加的风险增加。但是,我们对这个问题的理解受到技术和安全问题的限制,这些问题阻止了对太空中DNA修复过程的整体研究。CRISPR/CAS9基因编辑系统为真核生物中的双链破裂提供了一个模型。在这里,我们描述了一种基于CRISPR的基于CRISPR的测定法,用于完全在空间中选择双链破裂修复途径的评估。在此过程中必要的步骤中,我们描述了空间中第一个成功的遗传转化和CRISPR/CAS9基因组编辑。这些里程碑代表了国际空间站的分子生物学工具包的显着扩展。
因果建模——基于物理学的方法,解决因果关系 • 太阳扰动对低地球轨道的影响有多大? • 低地球轨道环境会因事件而发生多大程度的变化(以及变化持续时间)? • 每个驻留空间物体将如何响应该事件,以及重新获取您的空间资产和所有其他 RSO 需要多长时间? 有助于更好地理解因果关系并减少阻力不确定性
太空生产应用基于低地球轨道(LEO)的应用研发微重力应用,旨在展示基于空间的制造和生产活动,以促进新的业务增长和资本投资,代表可扩展和可持续的市场机会,并产生重复性价值,有可能产生对太空的需求和收入。
从国际空间站(ISS)的不同位置分离出属于甲基杆菌科家族的四种菌株。中,三个被鉴定为革兰氏阴性,杆状,过氧化氢酶阳性,氧化酶阳性,旋转细菌,被指定为IF7SW-B2 T,IIF1SW-B5和IIF4SW-B5,而第四次则被鉴定为甲基果脂型rhododesianum。这三种ISS菌株的序列相似性(指定为IF7SW-B2 T,IIF1SW-B5和IIF4SW-B5)的序列相似性在16S rRNA基因中<99.4%,在GyRB基因中为<97.3%,近距离的甲基杆菌属甲基杆菌是Inmanylobacterium indimum se2.11 t。此外,多级别序列分析将这三个ISS菌株置于M. Infimum的同一进化枝中。这三个ISS菌株的平均核苷酸身份(ANI)值<93%,数字DNA-DNA杂交(DDDH)值<46.4%,任何描述的甲基杆菌物种。基于ANI和DDDH分析,这三个ISS菌株被认为是属于甲基杆菌属的新物种。三个ISS菌株彼此显示100%的ANI相似性和DDDH值,表明这三个ISS菌株在各个流动期间分离出来,与不同位置分离出来,属于同一物种。这三个ISS菌株在25至30°C,pH 6.0至8.0和NaCl 0至1%的温度下最佳地生长。表型上,这三种ISS菌株与水生菌和M. terrae相似,因为与其他甲基杆菌相比,它们吸收了与唯一碳底物相似的糖。nov。提出了。类型应变为IF7SW-B2 T(NRRL B-65601 T和LMG 32165 T)。脂肪酸分析表明,ISS菌株产生的主要脂肪酸为C 18:1 -ω7c和c 18:1 -ω6c。主要的喹酮为泛素酮10,主要的极性脂质为二磷脂酰甘油,磷脂酰胆碱,磷脂酰甲醇,磷脂酰乙醇胺,磷脂酰甘油醇和未识别的脂质。因此,基于基因组,系统发育,生化和脂肪酸分析,IF7SW-B2 T,IIF1SW-B5和IIF4SW-B5的菌株被分配给甲基杆菌中的一种新物种,以及Ajmalii sp的甲基甲基甲虫。
纳米尺度的材料表面和界面已成为跨学科研究的引人入胜的主题,因为过去20年中许多有希望的应用。高度复杂的技术和新颖的材料家族已经出现了爆炸性的增长和令人信服的催化功能(Jiang等,2021),能源(Janek and Zeier,2016年),环境科学,环境科学(Kartal,2010年),生物医学,生物医学(Zhang et al。。在观察到的材料表演背后发展理论对于该跨学科领域的可持续成功以及成功实施新材料和过程中的下一代高级材料也至关重要。在本期特刊中,我们介绍了纳米级内材料表面和接口的结构,属性和技术应用的研究。该集合专用于跨学科的研究论文,将材料科学,生物学科学和化学的知识和实践整合到关键应用中。本期特刊中包含了两篇研究论文和三个评论,该论文为读者提供了纳米级材料表面和接口的理论和技术的选定案例,可以在各个方面有助于材料化学的进步。第一本研究文章由捷克共和国Palacký大学Olomouc的Michal Otyepka小组撰写,重点介绍了材料表面和界面的纳米结构。合成的石墨烯铁碳化物杂种具有纳米级孔径的分层结构。Chenxuan Wang的小组,来自这种新颖的结构导致令人着迷的性能,并在抗坏血酸内检测多巴胺时具有令人满意的检测极限。这表明材料表面和接口上的纳米结构对于高级材料的出色性能至关重要。第二篇研究文章由北京化学技术大学的成本HE组撰写,专注于材料表面和界面的技术应用。通过尖端的单分子力光谱观察到二氧化硅结合肽SB7和玻璃表面之间的相互作用力,并且通过分子动力学模拟揭示了以下理论。本研究表明,适当的技术的选择是揭示纳米级材料表面和界面的奥秘,从而区分新材料的性能。三篇评论文章强调了材料科学,与生物相关的科学和化学的结合,并在表面和生物医学应用的界面上结合在一起。