收稿日期:2003 年 11 月 28 日 / 接受日期:2003 年 12 月 12 日 / 发表日期:2003 年 12 月 18 日 摘要:本文介绍了我们实验室设计和实现的高精度磁通门磁传感器及其在军事和空间系统中的应用。在军事应用中,传感器用于地面未爆炸弹药定位系统,其中将介绍两个不同的项目。该传感器还用于实现捷克新科学卫星 MIMOSA 的精确磁通门磁强计。关键词:磁通门传感器、磁通门磁强计、军事系统、空间系统 ________________________________________________________________________________ 1.简介 虽然磁通门传感器不是最灵敏的磁传感器,但它们仍然是高灵敏度和高精度磁测量应用中最流行的传感器,例如地球磁场和行星际场的研究以及军事应用 [1]。它们之所以受欢迎,是因为它们具有高线性度、在相对较宽的温度范围内具有良好的稳定性,并且具有良好的抗交叉场效应和抗高磁场冲击能力 [2]。近几年来,AMR 和 GMR 磁传感器的灵敏度已达到与磁通门传感器相当的水平 [3],但它们的温度和长期不稳定性使它们仅适用于性能较低的应用 [4]。磁通门传感器大多在反馈配置下运行,因此它们的动态范围可以轻松达到 130 dB,线性误差小于 10 ppm。由此可以看出,传感器接口的正确设计和实际实现也非常重要。
Quadrelli 博士是首席研究技术专家,也是 JPL 机器人部门机器人建模与仿真小组的主管。他是复杂空间系统动力学和控制建模方面的专家。他拥有意大利帕多瓦机械工程学位、麻省理工学院航空航天学硕士学位和佐治亚理工学院航空航天工程博士学位。他曾是哈佛-史密森天体物理中心、造纸科学与技术研究所的客座科学家,以及加州理工学院研究生航空实验室的讲师。1997 年加入 NASA JPL 后,他为许多飞行项目做出了贡献,其中包括卡西尼-惠更斯探测器、深空一号、火星飞行器测试计划、火星探测车、空间干涉测量任务、自主会合实验和火星科学实验室等。他曾担任木星冰卫星轨道器项目的姿态控制负责人,以及激光干涉仪空间天线的综合建模任务经理。他曾领导或参与多个独立研发项目,涉及计算微力学、系留空间系统动力学与控制、编队飞行、充气孔径、高超音速进入、精确着陆、柔性多体动力学、航天器群制导、导航与控制、地面力学以及光学系统精确指向等领域。他目前的研究兴趣是多领域、多物理、多体、多尺度基于物理的建模、动力学和控制。他是美国航空航天学会副研究员、美国宇航局高级概念研究所研究员和加州理工学院/凯克空间研究所研究员。
参与者按字母顺序排列:Affentranger, Lorenz(ESA 洁净空间);Bouilly, Jean-Marc(阿丽亚娜集团);Bräuer, Tiziana(DLR 大气物理研究所);Brun-Buisson, Celine(阿丽亚娜集团);Ciezki, Helmut(DLR 空间推进研究所);Dominguez, Guillermo(DLR 空间系统研究所);Fasoulas, Stefanos(斯图加特大学);Fischer, Jan-Steffen(斯图加特大学);Förste, Sophie(斯图加特大学);Girardin, Valère(ESA FLPP);Herdrich, Georg(斯图加特大学);Karl, Sebastian(DLR 空气动力学和流动技术研究所);Löhle, Stefan(斯图加特大学);Martinez, Jan(DLR 空气动力学和流动技术研究所); Neubert, Jens(斯图加特大学); Schmidt, Anja(德国航天中心大气物理研究所、路德维希马克西米利安大学、剑桥大学); Sippel, Martin(德国航天中心空间系统研究所);帕特里克·斯塔克(MT Aerospace); Treyer,Karin(保罗谢勒研究所);马蒂厄·乌德里奥 (EPFL);乌尔巴诺,安娜费德里卡 (ISAE-SUPAERO); Wolfgramm, Lars(斯图加特大学)
定义微电子学 让我们从定义微电子学开始。微电子学是电子学的一个子领域,支持几乎所有国防部活动,实现全球定位系统、雷达、指挥和控制以及通信等功能。微电子学有很多种类型,但在国防方面最常讨论的是三种:专用集成电路 (ASIC)、现场可编程门阵列 (FPGA) 和片上系统 (SoC)。 专用集成电路 (ASIC) ASIC 是为特定功能而非通用用途定制的集成电路。ASIC 广泛应用于国防、通信和工业领域。一些例子包括消费电子产品、通信设备和抗辐射空间系统。 滚动文本:抗辐射加固:使电子元件和电路能够抵抗高水平电离辐射造成的损坏或故障的过程,特别适用于太空环境、核反应堆周围或核事故或核战争期间。现场可编程门阵列 (FPGA) FPGA 是一种集成电路,设计为在制造完成后由客户或设计人员进行配置。这就是它被称为现场可编程的原因。FPGA 适用于国防、通信和工业领域。以下是一些示例:航空、通信、成像系统和空间系统(经辐射加固)。滚动文本:辐射加固:使电子元件和电路能够抵抗高水平电离辐射造成的损坏或故障的过程,特别适用于太空环境、核反应堆周围或核事故或核战争期间。片上系统 (SoC) SoC 是利用计算机或电子设备的许多或所有组件的集成电路。SoC 可用于各种计算功能。一些示例包括移动计算设备,例如平板电脑、智能手机和嵌入式系统。
我们继续在半导体材料,高级包装技术和高密度集成电路等领域进行创新。我们的产品有资格符合最高政府,DLA,NASA和ESA标准,其可靠性已由多个机构独立验证。作为您在太空中电子系统的供应合作伙伴,Microchip可以在设计和实施的各个阶段解决问题,包括电力转换和发行分发,无线电和雷达信号处理,系统遥测和控制,数字逻辑集成以及半导体包装。我们邀请您探索Microchip的解决方案,并与我们互动,以帮助解决您最困难的空间系统设计挑战。
Jordan J. Plotnek 和 Jill Slay 南澳大利亚大学,澳大利亚阿德莱德 Jordan.Plotnek@mymail.unisa.edu.au Jill.Slay@unisa.edu.au 摘要:空间基础设施为许多关键行业提供重要服务,包括国防、交通、能源、公用事业、应急服务、银行、环境、学术等。这些服务范围从全球通信到遥感和地理定位,毫无疑问,许多新应用即将出现,包括进一步探索甚至人类定居的计划。因此,必须保护空间技术免受不必要的干扰——这项任务日益具有挑战性。除了本已复杂的空间安全环境外,我们正在经历第二次太空竞赛的开始,该竞赛正在快速部署包含大量新技术的空间系统,例如物联网 (IoT) 和先进的机载处理。这随后给已经老化且脆弱的卫星生态系统带来了新的脆弱性,从而增加了发生潜在灾难性安全事件的风险。尽管在政治、法律和国际关系文献中得到了很好的阐述,但目前太空安全的工程、科学和技术方面研究不足且脱节,导致研究分散且术语不一致。本文从工程角度研究了太空安全,将现有的太空和安全文献概念性地结合在一起,详细描述了太空威胁形势并确定了研究差距和机会。此外,本文指出,需要更广泛地认识到空间系统安全是一个专业的跨学科领域,以打破学科孤岛,加强协作,统一定义、分类法和研究目标。关键词:关键基础设施、网络威胁、弹性、卫星、太空安全、太空武器
塞拉利昂内华达州公司(SNC)空间系统QWKSEP 15低调分离系统(LPSS)为小型卫星分离提供了低冲刺的解决方案。该系统是为标准ESPA(EELV二级有效载荷适配器)设计的,具有15英寸卫星接口启动配置(与推力轴正交)。界面环具有可调节的启动弹簧,通过分离连接器和冗余遥测指示正分离的弹簧。该系统使用迷你,低震动夹具打开装置(CBOD)释放。此设计配置具有100多个成功的飞行版本。
研究将彻底改变太空任务的尖端技术;讨论驱动技术的最新发展如何提高太空任务的精度和可靠性;探索如何将人工智能和机器学习集成到空间系统中,以实现预测性维护、异常检测和航天器操作优化;分析对太空探索可持续性的日益重视,包括可重复使用航天器的开发、环保推进方法和可持续的任务设计;预测未来五年将影响太空探索的主要趋势和挑战,包括监管障碍、技术整合以及对强大供应链的需求