博士论文论文的描述:波兰语中博士学位论文的Piotr Marek Smolnicki标题:流动性现代解决方案与大都会在英语中论文的空间结构之间的关系:jaceksołtys博士论文的第二个发起人*:博士学位论文的辅助促进者*:博士学位论文的科普罗运动*:国防日期:波兰博士学位论文的关键词:自动驾驶汽车,自动驾驶汽车,汽车交通,汽车舍名,骑车,骑车,新移民,公共运输,公共运输,公共运输,公共运输,公共运输,cilban计划,墨西哥群岛。自动驾驶汽车,汽车,MAA,新移动性,运输,公共交通,公共交通,乘车,骑车,骑车,城市规划摘要摘要在波兰语中:论文的起源是关于在媒体和出版物中实施现代实施现代解决方案的积极影响的信息(例如根据需要,共享,自主),但被低估了它们扩散的副作用的威胁,尤其是在大都市中。因此,这是一个研究目标,以便有效地接受新解决方案的扩散过程,以获取新知识。对出版物的分析允许确定知识和提出研究问题的缺点(论文)。在世界各地的专家中以两条曲线进行的Delphic调查中获得了对它们的答案。基于积累的知识,进行了结构分析,从系统地讲大都市:创建其一百个元素(变量)的列表和它们之间的直接关系矩阵。使用MICAC技术,确定了间接关系,这使得能够检测最多的运动变量和研究最重要的关系。表达了两个极端情况:乐观和悲观,这证实了研究论文,包括主要论点,如果不采取适当的步骤,那么现代技术和组织解决方案在移动性中的扩散将导致许多负面的,也导致大都市空间结构中的许多负面,不可逆的副作用。英语论文的摘要:论文的起源是观察到,媒体和出版物是由有关邮政的信息所主导的,即实施现代流动解决方案的积极影响(例如:按需,按需,按需,共享,自动驾驶汽车)的扩散副作用,其扩散的副作用,在市场中占有不足。研究目标是为了获得建筑学院的新知识,大都会的管理,以便尽可能有效地采用新解决方案的过程。对出版物的分析允许识别知识的差距并提出研究问题(这些)。对他们的答案是在世界各地专家之间进行两轮调查的Delphi研究中的审议。使用MICMAC技术,确定了间接关系,这使得可以检测到最重要的运动范围和最重要的关系。根据累积的知识,进行结构分析,系统地呈现大都市:创建其一百个要素(varights)的列表和直接关系的矩阵。制定了两个极端情况:乐观和悲观,这证实了研究论文,包括主要论点,如果不采取适当的步骤,那么现代技术和组织解决方案在移动性中的扩散将导致许多负面影响后果,包括大都市海报袭击中的不可逆转的副作用。听证会摘要以写作的语言**:博士论文的关键词以书写的语言**: *)删除不必要的。**)适用于以波兰语或英语以外的其他语言编写的博士学位论文。
摘要:本文提出了不同强度对大地圆顶结构的影响的确定。根据常规的八面体设计了分析圆顶的结构,该结构是根据创建其拓扑的两种不同的方法。使用了四个不同强度和记录持续时间的地震记录,这使得对8个模型进行数值分析成为可能。设计的空间结构是带有钢横截面的圆顶,这一点毫无疑问地以其轻度和覆盖非常大的面积的可能性,而无需使用内部支撑。设计钢圆顶目前是构造师和建筑师的挑战,他们考虑了他们的美学考虑。使用时间历史方法,该论文在应用不同方向(两个水平的“ X”和“ Y”和一个垂直“ Z”)中呈现了地震响应。显示了强制振动和记录强度的值,在此基础上,试图确定哪种地震记录可能对根据两种不同的结构拓扑而产生的设计的地质圆顶可能更不利。为此,使用了FFT(快速傅立叶变换)方法。还分析了结构的最大加速度和位移。进行的分析表明,地震激发对大地圆顶结构的影响,具体取决于塑造其拓扑的应用方法(方法1和2)。此外,该分析可能有助于评估偶然地震的影响。本文无疑将在设计地震区域的地球圆顶结构中有用。
土壤是对人类生活最重要的环境自然资源之一,对人类健康和生态环境的质量非常重要。重金属对土壤酶活性有直接影响,因此,酶的活性基团的空间结构被破坏,因此,微生物的生长和繁殖受到了破坏,并且减少了微生物酶的合成和代谢。土壤微生物通常用作土壤环境质量的重要指标,因为它们对土壤环境条件的敏感性大于较大的动物或植物。通过土壤微生物的变化,无论土壤被污染,土壤污染的程度。重金属对土壤微生物效应的影响主要包括重金属对土壤微生物活性的影响,对土壤酶活性的影响和土壤微生物群落的组成。重金属通过与蛋白质结合而杀死微生物,从而抑制酶活性。重金属是寡动力学的,这意味着非常小的浓度显示出明显的抗菌活性。汞是重金属,用于微生物对照,各种形式的汞通过与蛋白质中含硫的氨基酸结合而抑制微生物作用。We collected 18 soil samples from Unnao and Jajmau in which Jajmau had the highest total microbial count (bacteria) in all three layers (Upper, middle and lower) of soil and Unnao had the lowest total microbial count (bacteria) in all three layers (Upper, middle and lower) of soil but the total microbial count (fungi) in all two layers (Upper, middle) is high in Jajmau in与其他总微生物计数(下层)的比较较低。
将非线性数据建模为Riemannian歧管上的对称阳性定义(SPD)矩阵,引起了对各种分类任务的广泛关注。在深度学习的背景下,基于SPD矩阵的Riemannian网络已被证明是对电子脑电图(EEG)信号进行分类的有前途的解决方案,可在其结构化的2D特征表示中捕获Riemannian几何形状。但是,现有方法通常在嵌入空间中学习所有可用的脑电图中的空间结构,其优化程序依赖于计算 - 昂贵的迭代。此外,这些十种方法努力将所有类型的关系船编码为单个距离度量标准,从而导致一般性丧失。为了解决上述局限性,我们提出了一种riemannian嵌入银行方法,该方法将整个填充空间中常见的空间模式学习的概率分为k个缩写,并为每个子问题构建一个模型,与SPD Neural Net-net Works结合使用。通过利用Riemannian歧管上的“独立学习”技术的概念,Reb将数据和嵌入空间划分为k非重叠子集中,并在Riemannian ge-be-emetric Space中学习K单独的距离指标,而不是向量空间。然后,在SPD神经网络的嵌入层中,学习的K非重叠子集分为神经元。公共脑电图数据集的实验结果证明了尽管非平稳性质,但提出的脑电图信号的常见空间模式的拟议方法的优越性,在维持概括的同时提高了收敛速度。
核物理和高能物理的一个关键目标是从标准模型出发描述物质的非平衡动力学,例如在早期宇宙和粒子对撞机中的非平衡动力学。通过格点规范理论框架的经典计算方法在这一任务中取得的成功有限。格点规范理论的量子模拟有望克服计算限制。由于局部约束(高斯定律),格点规范理论具有复杂的希尔伯特空间结构。这种结构使平衡和非平衡过程中与储层耦合的系统的热力学性质的定义变得复杂。我们展示了如何使用强耦合热力学来定义功和热等热力学量,强耦合热力学是最近在量子热力学领域蓬勃发展的框架。我们的定义适用于瞬时淬火,即在量子模拟器中进行的简单非平衡过程。为了说明我们的框架,我们计算了在与 1+1 维物质耦合的 Z 2 格子规范理论中淬火过程中交换的功和热。作为淬火参数的函数,热力学量证明了预期的相变。对于一般的热状态,我们推导出量子多体系统的纠缠哈密顿量(可用量子信息处理工具测量)与平均力哈密顿量(用于定义强耦合热力学量)之间的简单关系。
随着进入空间和机器人自主权能力的前进,同时对部署大型,复杂的空间结构的兴趣越来越兴趣,以提供新的轨道上能力。新的太空式观测值,大型轨道哨所,甚至是未来派的轨道上制造,也将使用诸如Orbit On-Orbit添加剂制造的技术组装来实现空间结构的组装,从而可以在构造甚至修复复杂的硬件方面提供灵活性。但是,在不确定性下进行机器人组装系统的基础动力学可能(例如改变惯性特性)。因此,必须在结构组装过程中考虑机器人组装器和操纵的加性制造组件的惯性估计。这项工作的贡献是解决机器人组装的运动计划和控制,并考虑到合并的自由式机器人组装程序和加上制造的组件系统的惯性估计。特别是线性二次调节器快速探索随机树(LQR-RRT*)和动态可行的路径平滑,用于获得系统的无障碍轨迹。此外,通过近似连续系统和伴随的奖励,将模型学习明确地纳入了计划阶段。然后可以通过强大的试管模型预测控制技术明确处理剩余的不足。通过获得既避免障碍物的受控轨迹,也可以学习自由型和操纵组件系统的惯性特性,自由度迅速考虑并计划建立具有增强系统知识的空间结构。该方法自然而然地概括了修复,加油和重新提供空间结构的组件,同时在例如惯性不确定性下提供最佳的无碰撞轨迹。
自旋向列相是经典液晶的磁性类似物,是同时具有液体和固体特性的第四种物质状态 1,2 。特别有趣的是价键自旋向列相 3-5 ,其中自旋量子纠缠形成多极序而不会破坏时间反演对称性,但其明确的实验实现仍然难以实现。在这里,我们在方晶格铱酸盐 Sr 2 IrO 4 中建立了自旋向列相,其在强自旋轨道耦合极限下近似实现伪自旋二分之一海森堡反铁磁体 6-9 。冷却后,在 TC ≈ 263 K 时转变为自旋向列相,其特点是从拉曼光谱中提取的静态自旋四极子磁化率发生发散,并伴随与旋转对称性自发破缺相关的集体模式的出现。四极序在 TN ≈ 230 K 以下的反铁磁相中持续存在,并通过共振 X 射线衍射与反铁磁序的干涉而直接观察到,这使我们能够唯一地确定其空间结构。此外,我们发现利用共振非弹性 X 射线散射在短波长尺度上完全破坏了相干磁振子激发,这表明反铁磁态中存在多体量子纠缠 10,11 。总之,我们的结果揭示了 Néel 反铁磁体背后的量子序,人们普遍认为它与高温超导机制密切相关 12,13 。
另一种可能性是永动机,在这方面,星际飞船的速度是第二个问题,但第一个问题是如何设计这样一个物体,使其在没有任何燃料或外部阈值或触发器的情况下永远运动下去。用于星际旅行的最多的概念是量子泡沫或宇宙时空结构的“曲速引擎”,这个概念是创造这样的曲速引擎,它可以扭曲时空或在超空间中旅行。由于量子力学效应,量子泡沫是空间结构中每个小尺度上的时空波动。高维运输飞船也具有四维或更像太空中的宇宙立方的导航能力,可以探索和进入新的不同的宇宙,这个宇宙有完全不同的规律、物体、行星、恒星和形状,有可能出现与人类相比最具智慧的生命形式。黑洞、虫洞和超空间可以使这一切成为可能,但这方面需要超高速宇宙飞船,因为在“事件视界”甚至光也无法通过奇点,而奇点处的引力巨大,时间在这里终结。我担心,要前往数十亿万光年之外的星系、超级星系团、星际、多元宇宙或最终存在的全能宇宙,我们需要这样一种运输飞船,其速度是光速的几倍。因此解决方案可能是基于“超光速”粒子或基于第赫子粒子的航天器工程,这是一种假设的粒子,其速度总是比光速快。另外,另一种可能性是基于“中微子”的宇宙飞船进行星际或太空旅行,中微子是一种与电子非常相似的亚原子粒子,但不带电荷,质量可以忽略不计,可以假设为零。
本文件中使用的首字母缩略词和缩写定义如下。 AC-10 Aerocube-10 ACCESS 可直立空间结构装配概念 ACME 带移动炮位增材制造 AFRL 空军研究实验室 AMF 增材制造设施 AMS Alpha 磁谱仪 ANGELS 本地空间自动导航和制导实验 ARMADAS 自动可重构任务自适应数字装配系统 CHAPEA 机组人员健康和表现模拟 CNC 计算机数控 DARPA 国防高级研究计划局 Dextre 特殊用途灵巧机械手 EASE 舱外活动结构组装实验 EBW 电子束焊接 EELV 改进型一次性运载火箭 ELSA-d Astroscale 演示报废服务 ESPA EELV 二级有效载荷适配器 ETS 工程测试卫星 EVA 舱外活动 EXPRESS 加快空间站实验处理 FARE 流体采集和补给实验 FDM 熔融沉积成型 FREND 前端机器人启用近期演示 GaLORE 从风化层电解中获取的气态月氧 GEO 地球静止轨道 GOLD 通用锁存装置 HST 哈勃太空望远镜 HTP 高强度过氧化物 ISA 空间组装 ISAM 空间维修、组装和制造 ISFR 现场制造和维修 ISM 空间制造 ISRU 现场资源利用 ISS 国际空间站 ISSI 智能空间系统接口 JEM 日本实验模块 JEM-RMS 日本实验模块遥控操作系统 LANCE 用于施工和挖掘的月球附着节点 LEO 低地球轨道 LH2 液氢 LINCS 本地智能网络协作系统 LOX 液氧 LSMS 轻型表面操纵系统 MAMBA 金属先进制造 机器人辅助组装 MER 火星探测探测器
时变介质的光学[1-3]具有悠久的历史,其开创性研究可以追溯到1950年代至1970年代[4,5]。材料工程和纳米制造的最新进展已恢复了对这一领域的兴趣,从而在实验者的范围内实现了时间调节的光子结构[6,7]。随着时间的推移调节材料参数可解锁一组有趣的功能[8]。由于模量破坏了时间翻译对称性,因此能量在总体上不能保守[4]。它可以对辐射[9,10],频率转换甚至固定电荷的辐射[11]实现强大而选择性的扩增[11]。热量,即使在没有静态磁场的情况下,介质的时间调节也可以在光学频率下打破时间转换对称性t,从而铺平了朝着强烈非偏置光学结构铺平的方法[12,13]。这些可能性刺激了很多工作,如最近的评论[1-3]。时变介质的物理学与光子晶体的相关区域表现出与工程空间周期性的人工结构相关区域。类似于光子晶体的新兴特性源自其空间结构,时间调节培养基的物理学植根于材料种子的特定形式(图。1)。因此,定期调制的疗法通常称为光子时间晶体(PTC)。请注意,由于外部刺激,这些结构会在时间上破裂翻译对称性,这将它们与时间晶体的适当[14,15]区分开来,其中t破坏了t-破坏性。尽管PTC经常打破T对称性和互惠性,但可用的非偏置响应的多样性仍然在很大程度上没有探索。轴轴电动力学[16],这一直是基本兴趣的重点