嵌合抗原受体T(CAR-T)细胞疗法是一种对癌症的有前途且精确的靶向疗法,在临床应用中具有显着潜力。然而,严重的不良反应限制了这种疗法的临床应用,主要是由于CAR-T细胞无法控制的激活引起的,包括由于不受管制的CAR-T细胞动作时间而引起的过度免疫反应激活以及由空间定位不当引起的毒性。因此,为增强可控性和安全性,提出了CAR-T细胞的控制模块。基于基因工程技术的合成生物学用于用于特定目的的人造细胞或生物。近年来已经探索了这种方法,作为实现CAR-T细胞疗法可控性的一种手段。在这篇综述中,我们总结了用于解决时间和空间维度中CAR-T细胞疗法的主要不良影响的合成生物学方法的最新进展。
介绍了一个框架,用于在一个空间维度的 2 味晶格理论中实时模拟强子和原子核的弱衰变。通过 Jordan-Wigner 变换映射到自旋算子后,发现标准模型的单代需要每个空间晶格点 16 个量子比特。该动力学包括量子色动力学和味变弱相互作用,后者通过四费米有效算子实现。在 Quantinuum 的 H1-1 20 量子比特捕获离子系统上开发并运行了实现该晶格理论中时间演化的量子电路,以模拟单个重子在一个晶格点上的 β 衰变。这些模拟包括初始状态准备,并针对一个和两个 Trotter 时间步骤执行。讨论了此类晶格理论的潜在内在误差修正特性,并提供了模拟由中微子马约拉纳质量项引起的原子核 0 νββ 衰变所需的主要晶格哈密顿量。
我们介绍了矩阵乘积状态(MP)的首次成功应用,该矩阵乘积状态(MPS)代表在整个温度范围内的两个空间维度中平衡中的热量子纯状态(TPQ)。我们将Kitaev Honeycomb模型用作主持量子自旋液体(QSL)基态的突出例子,以使用先前几乎完全使用Free Majorana Fermionic描述来瞄准两个先前已解决的特定热峰。从高温随机状态开始,我们的TPQ-MPS框架精确地再现了这些峰,这表明基于自旋的量子多体外描述仍然可以捕获Z 2量规场中的新出现的巡回Majorana fermions。截断过程有效地丢弃了高能状态,甚至达到了远程纠缠的拓扑状态,接近给定有限尺寸群集的确切基态。TPQ-MP的优点比精确的对角度或基于纯化的方法的优势是,即使在有限温度下,其数值降低的成本也来自降低的效率希尔伯特空间。
Kitaev 著名的哈密顿量,也称为 toric 代码,引起了广泛关注,并定义了一个围绕解禁、拓扑序和量子纠错物理学的千载难逢的范式 [1]。Toric 代码哈密顿量是一个重要工具,因为它包含最简单的拓扑有序相 - 解禁的 Z 2 量子自旋液体 - 具有在拓扑量子计算提案中发挥重要作用的带隙任意子激发 [2],并且可以浓缩为显示普适物理的量子临界点。重要的是,Toric 代码可以通过许多额外的哈密顿量项进行修改,这极大地丰富了其物理特性,同时在各种极限下仍然易于分析。虽然 toric 代码是明确的量子,但它在两个空间维度上的配分函数可以映射到三维 (3 D) 经典配分函数,可以使用分析或数值技术进一步分析 [3,4]。在这些注释中,我们提供了此映射的详细推导。Kitaev 将 toric 码的哈密顿量定义为:
从更基本的量子引力理论中产生局部有效理论,该理论似乎具有更少的自由度,这是理论物理学的一个主要难题。解决该问题的最新方法是考虑与这些理论相关的希尔伯特空间映射的一般特征。在这项工作中,我们从这种非等距映射构建了近似局部可观测量或重叠量子比特。我们表明,有效理论中的局部过程可以用具有更少自由度的量子系统来欺骗,与实际局部性的偏差可以识别为量子引力的特征。举一个具体的例子,我们构建了两个德西特时空的张量网络模型,展示了指数扩展和局部物理如何在崩溃之前被欺骗很长一段时间。我们的结果强调了重叠量子比特、希尔伯特空间维度验证、黑洞中的自由度计数、全息术和量子引力中的近似局部性之间的联系。
超明显点模式可以通过超均匀缩放指数α> 0进行分类,该指数α> 0,该指数符合结构因子s(k)的幂律缩放行为,这是波数k。| K |在起源附近,例如s(k)〜| K | α在s(k)随着k连续变化为k→0。在本文中,我们表明可传播性是确定s(k)不连续的准膜系统的有效方法,并由一组密集的bragg峰组成。它已在[Phys。修订版e 104,054102(2021)],对于有限α的培养基,可以将过剩可传播性s(∞)-s(t)的长时间行为拟合到形式t - (d-α) / 2的幂定律中,在其中d是空间维度,以准确提取α,以使α准确提取α。我们首先将准二极管和极限 - 周期点模式转换为两相介质,通过将它们映射到相同的非重叠磁盘的包装上,其中与磁盘的空间内部代表一个相位,并且在其外部空间代表了第二阶段。然后,我们计算包装的光谱密度〜χv(k),并最终计算其多余的散布性的长期行为。特别是我们表明,多余的传播性可用于准确提取一维(1D)极限 - 周期性倍加倍链(α= 1)和1D Quasicrystalline fibonacci链(α= 3)至0。02%的分析已知的确切结果。此外,我们获得α= 5的值。97±0。06对于二维penrose瓷砖,并提出了合理的理论参数,强烈表明α完全等于六个。我们还表明,由于此处检查的结构的自相似性,可以截断用于计算散布性并获得α准确值的散射信息的小k区域,并且与未截断的情况下的偏差很小,该案例随着系统尺寸的增加而降低。这强烈表明,可以从适度尺寸的有限样品中获得α的良好估计。此处描述的方法提供了一个简单而通用的过程,可以准确表征Quasrystalline中存在的大规模翻译顺序,并在任何自相似的空间维度中都具有极限 - 周期介质。此外,从编码〜χV(k)中编码的这些两相介质中提取的散射信息可用于估计其物理性质,例如它们的有效动态介电常数,有效的动态弹性常数和流动性。
量子纠错领域的一个有趣问题是找到一个物理系统,该系统承载着“被动保护的量子存储器”,即与自然想要纠正错误的环境耦合的编码量子位。迄今为止,仅在四个或更高的空间维度中才知道量子存储器能够抵抗有限温度效应。在这里,我们采用不同的方法,通过依赖驱动耗散环境来实现稳定的量子存储器。我们提出了一个新模型,即光子-伊辛模型,它似乎可以被动地纠正二维中的位翻转和相位翻转错误:由光子“猫量子位”组成的方格,这些量子位通过耗散项耦合,倾向于局部修复错误。受两个不同的 Z 2 对称性破坏相的启发,我们的方案依靠类伊辛耗散器来防止位翻转,并依靠驱动耗散光子环境来防止相位翻转。我们还讨论了实现光子-伊辛模型的可能方法。
局部和时间周期性动力学类似于随机统一的数量?在当前的工作中,我们使用量子计算中的Clifford形式主义来解决这个问题。我们分析了一个无序的浮标模型,其特征是一个空间维度的局部,时间周期和随机量子电路。我们观察到,进化操作员有时会享受额外的对称性,而这些对称性是该时期的半英尺倍数。这样,我们证明,在整个系统中散布任何初始扰动后,当所有量子都与Pauli操作员测量所有量子器时,都无法将进化运算符与(HAAR)随机统一区分开。随着时间的流逝,这种不可区分性会降低,这与(时间依赖性)随机电路的情况更高。我们还证明保利操作员的演变显示了一种混合形式。这些结果要求局部子系统的维度很大。在相反的策略中,我们的系统显示出一种新型的定位形式,该定位形式是由有效的单方面壁的出现产生的,这防止了扰动朝着一个方向而不是另一个方向越过壁。
华盛顿大学核理论研究所,华盛顿州西雅图 98195-1550,美国(日期:2021 年 2 月 10 日 - 21:58)摘要无质量无相互作用标量场理论中两个不相连区域之间可蒸馏纠缠的上限具有由几何衰减常数定义的指数衰减。当用空间晶格在短距离内调节时,这种纠缠会突然消失在无量纲分离之外,从而定义负球体。在两个空间维度中,我们通过一系列晶格计算确定一对圆盘之间的几何衰减常数以及负球体向连续体的增长。与三维空间量子场论建立联系,假设此类量子信息尺度也出现在量子色动力学 (QCD) 中,则在描述核子和原子核低能动力学的有效场论中可能会出现一种新的相对尺度。我们重点介绍了可蒸馏纠缠结构对有效场论、格点 QCD 计算和未来量子模拟的潜在影响。
华盛顿大学核理论研究所,西雅图,华盛顿州 98195-1550,美国(日期:2021 年 2 月 1 日 - 9:54)摘要无质量无相互作用标量场理论的两个不相连区域之间可蒸馏纠缠的上限具有由几何衰减常数定义的指数衰减。当用空间晶格在短距离内调节时,这种纠缠会突然消失在无量纲分离之外,从而定义负球体。在两个空间维度中,我们通过一系列晶格计算确定一对圆盘之间的几何衰减常数以及负球体向连续体的增长。与三维空间量子场论建立联系,假设此类量子信息尺度也出现在量子色动力学 (QCD) 中,则在描述核子和原子核低能动力学的有效场论中可能会出现一种新的相对尺度。我们重点介绍了可蒸馏纠缠结构对有效场论、格点 QCD 计算和未来量子模拟的潜在影响。