中红外(mir)光电设备对于夜视,热感应,自动驾驶汽车,自由空间通信和光谱术等多种应用至关重要。为此,利用无处不在的基于硅的加工已经成为一种有力的策略,可以通过使用IV组葡萄球菌(GESN)合金来实现。的确,由于它们与硅的兼容性及其覆盖整个MWIR范围的可调带隙能量,GESN半导体是用于紧凑且可扩展的miR技术的领先者平台。然而,GESN大晶格参数一直是限制硅晶片上GESN外交质量的主要障碍。这些局限性进一步加剧了,因为GE 1 -X SN X层和SN内容的异质结构至少比MWIR应用相关的设备结构需要至少一个数量级。在此制度中,生长的层通常在显着的压缩应变下,这会影响带隙的直接性并在γ点增加其能量,从而阻碍了设备的性能并限制了miR光谱的覆盖范围。这种压缩应变的积累不仅会影响频带结构,而且还限制了SN原子在生长层中的结合,从而使SN含量的控制成为艰巨的任务。
1 月 8 日星期一,Starlink 团队通过我们六天前发射的一颗新的 Direct to Cell 卫星,使用 T-Mobile 网络频谱成功发送和接收了第一条短信。将手机连接到卫星有几个主要挑战需要克服。例如,在地面网络中,手机信号塔是静止的,但在卫星网络中,它们相对于地球上的用户以每小时数万英里的速度移动。这要求卫星和住宿设施之间进行无缝切换,以应对多普勒频移和时间延迟等因素,这些因素对手机与空间通信构成挑战。由于手机的天线增益和发射功率较低,手机也很难连接到数百公里外的卫星。搭载 Direct to Cell 有效载荷的 Starlink 卫星配备了创新的新型定制硅片、相控阵天线和先进的软件算法,可以克服这些挑战并为地面上的手机提供标准 LTE 服务。作为火箭和卫星发射和制造领域的全球领导者,SpaceX 具有独特的优势,可以快速扩展我们的 Direct to Cell 网络,并将快速发射数百颗卫星组成的星座,以在 2024 年提供文本服务,并在 2025 年提供语音、数据和物联网 (IoT) 服务。
• 开发和生产宙斯盾弹道导弹防御标准导弹 3 号 (SM-3) 拦截器的组件,以准确、有效地防御中短程弹道导弹威胁。 • 提供和保护军事通信、数据和天基资产,以抵御动能、定向能、干扰、地面发射和网络威胁。 • 利用先进的弹性技术和系统,通过地面和空间对空间交联提供空间通信,以确保在所有环境中都能访问语音和数据。 • 将 DevSecOps、开放式架构、多域传感器和平台集成方面的专业知识与高速、高带宽安全通信相结合,以加速创建将传感器连接到射手所需的弹性多域网络。 • 通过波音公司的子公司千年空间系统实现先进的跨轨道导弹预警和跟踪,包括宽视场和轨道保管原型,以检测和跟踪当前和高级威胁。 • 通过我们的卫星托管服务功能提供商业卫星网络,消除商业技术的传统障碍,如专有硬件和对单一卫星运营商的依赖。 • 提供保证定位、导航和授时 (APNT) 技术,在没有 GPS 的情况下保持关键位置和授时以保护瞄准能力。 • 通过波音公司的定向网络波形从空对空和空对地资产提供远程、大数据速率通信,促进传感器到射手的能力,从而克服对抗环境中的干扰。
目标:本文讨论的问题是卫星星座作为政府和军事技术要求,以响应当前的空间通信趋势。方法:为了进行这项研究,采用了以下理论研究方法:分析、综合、抽象、概括和推理。结果:本文简要描述了卫星通信的发展,以及当前和新兴趋势的市场分析,这些分析清楚地表明,小型卫星及其星座被认为是欧洲成员国政府和军事领域结构化机构中规模最大、增长最快的部分。该机构为创新研发项目提供解决方案,并以更独立的角度与商业领域或行政外交努力合作,在开展的项目中创造平衡的协同效应,以实现全球安全因素。本文还简要、非技术性地描述了民用和军用用户对卫星通信的一组一般要求。结论:尽管在外层空间技术要求的更快数据处理方面技术和竞争力不断发展,但分析研究中提出的研究结果对于提供全球安全和秩序标准仍然有用。应考虑在欧洲投资空间技术和科学的共同议程下,欧盟机构和非结构化欧盟实体之间的双边合作解决方案,作为加强欧洲大陆作为当前卫星通信趋势的政府和军事要求方面的全球参与者和专家地位的弹性结构。
摘要 天线阵列已有一百多年的悠久历史,并且与电子信息技术的发展紧密相关,在无线通信和雷达中发挥着不可或缺的作用。随着电子信息技术的飞速发展,全时间、全域、全空间网络服务需求呈爆发式增长,对天/空/地各类平台提出了新的通信需求。为满足未来第六代(6G)无线通信对大容量、广覆盖、低时延、强鲁棒性等日益增长的要求,在天/空/地通信网络中采用不同类型的天线阵列(如相控阵、数字阵列、可重构智能面等)和各种波束成形技术(如模拟波束成形、数字波束成形、混合波束成形、无源波束成形等)将有望带来可观的天线增益、复用增益和分集增益等优势。然而,为天/空/地通信网络启用天线阵列提出了特定、独特和棘手的挑战,这引起了广泛的研究关注。本文旨在概述天线阵列启用的空间/空/地通信和网络领域。首先介绍天线阵列启用的空间/空/地通信和网络的技术潜力和挑战。随后,讨论天线阵列的结构和设计。然后,我们讨论天线阵列促进的各种新兴技术,以满足天/空/地通信系统的新通信要求。在这些新兴技术的推动下,空间通信、机载通信和地面通信具有不同的特点、挑战和解决方案。
太空任务分析与设计理学硕士课程提供技能、知识和对不断发展和演变的太空行业所用当前技术的理解。无论是在英国还是在国际上,这都是经济中一个快速增长的部分,其应用领域包括空间通信、空间相关导航、地球观测、空间科学和空间探索等。该课程旨在培养工程/科学毕业生,他们精通太空任务、航天器设计和相关技术的理论和实践,能够为未来航天器设计和部署的发展做出贡献。该课程旨在提供与太空技术相关的基本原理的知识,重点是自主飞行器任务和操作以及航天器的发射。太空任务需要对航天器系统工程、任务规划和设计以及高级轨道动力学有深入的了解。这些基本原理涵盖了航天器设计、传感技术、信号处理、功率分配、轨道理论、整体系统工程、动力学、优化、通信和控制中采用的技术。通过使用 NASA 的通用任务分析工具和 MATLAB 进行大量模拟和建模练习,这些技术和工艺的有效应用将在实验室课程中得到展示。工业设计项目和个人项目/论文的工作需要对 GMAT 有良好的了解。除了课程的技术部分,您还将通过一系列讲座和研讨会了解太空运营的法律框架和道德问题。该课程适合希望加深对该领域了解的新毕业生和经验丰富的专业人士
摘要 — 天线阵列已有一百多年的悠久历史,伴随电子信息技术的发展而不断演进,在无线通信、雷达等系统中发挥着不可或缺的作用。随着电子信息技术的快速发展,全时间、全域、全空间网络服务需求爆发式增长,对天/空/地各类平台提出了新的通信需求。为了满足未来第六代(6G)无线通信对高容量、广覆盖、低延迟和强鲁棒性等日益增长的需求,在天/空/地通信网络中采用不同类型的天线阵列(例如,相控阵、数字阵列和可重构智能表面等)和各种波束成形技术(例如,模拟波束成形、数字波束成形、混合波束成形和无源波束成形等)具有可观的天线增益、复用增益和分集增益等优势。然而,为天/空/地通信网络启用天线阵列提出了特定、独特和棘手的挑战,引起了广泛的研究关注。本文旨在概述天线阵列使能的空间/空/地通信和网络领域。首先介绍天线阵列支持的空间/空中/地面通信和网络的技术潜力和挑战。随后讨论天线阵列结构和设计。然后,我们讨论了天线阵列推动的各种新兴技术,以满足空间/空中/地面通信系统的新通信要求。在这些新兴技术的支持下,空间通信、机载通信和地面通信具有独特的特点、挑战和解决方案
Tobias Lips ,董事总经理,HTG – 高超音速技术哥廷根有限公司,德国 Katarzyna Malinowska ,副教授,科兹明斯基大学民法系,波兰 Jonathan McDowell ,天体物理学家,天体物理中心:哈佛大学和史密森尼学会 Steven Moore ,空中交通管理网络运营部负责人,欧洲空中航行安全组织 Elina Morozova ,国际空间通信组织国际通信组织执行董事 Carmen Pardini ,高级研究员,航天飞行动力学实验室,信息科学与技术研究所,意大利国家研究委员会 (CNR) Valery Trushlyakov ,航空和火箭工程系教授,鄂木斯克国立技术大学“空间生态”科学教育中心主任 Olga Volynskaya ,独立空间法和政策专家 Ludwig Weber ,麦吉尔大学航空和空间法研究所兼职教授兼国际民航组织法律局前局长 Charlotte Hook ,初级研究员,加拿大不列颠哥伦比亚大学外层空间研究所和研究员 Ewan Wright 加拿大不列颠哥伦比亚大学外层空间研究所初级研究员和跨学科研究生项目博士生 这些建议的签署者仅表达了他们的个人观点。他们对本文件的贡献不一定反映其所属机构的官方政策或立场,无论是大学、公司还是非政府机构
摘要 — 根据 NASA 的 Artemis 计划,NASA 计划在未来几年内将宇航员送回月球。近期的任务将与前几次阿波罗任务类似,但要复杂得多。然而,与阿波罗不同的是,这次 NASA 打算建立基础设施,以支持人类长期驻扎并最终实现月球工业化。为了实现这一愿景,NASA 计划尽可能多地与商业和国际伙伴合作,而不是独自开发、建造和操作设备。月球基础设施最终将由许多公共和私人组织随着时间的推移而建设,以支持持续的人类探索、科学和工业活动。显然,如果没有一个能够为许多用户提供不同程度服务的强大的月球通信和导航系统,这一未来愿景将无法实现。在地球上,大多数人都非常熟悉第三代合作伙伴计划 (3GPP) 5G 移动电信技术。美国宇航局的空间技术任务理事会和美国宇航局的空间通信和导航办公室希望看到一个月球通信和导航网络,其功能与我们大多数人今天享受的蜂窝通信网络类似。建立这样的网络需要许多组织的参与。本文将概述美国宇航局对在月球表面使用 5G 及更高技术的兴趣;它还将描述美国宇航局内部基于 3GPP 标准或由美国宇航局资助的当前工作,例如诺基亚即将在月球表面进行的 4G/LTE 引爆点演示。
摘要 由于太空创新技术的使用,近年来太空服务的重要性显著增加。在开发新方法和新技术时,必须在真实操作条件下直接在太空中测试功能性和稳健性。然而,这在今天仍然是一个困难,因为研究人员和开发人员如果不花费大量的时间和成本就无法实现这种在轨演示的能力。慕尼黑联邦武装部队大学 (UniBw M) 在各个研究中心针对太空旅行和太空服务的各种相关主题开展创新开发和研究工作。作为对地面实验室已开展的研究工作的补充,我们引入了在轨演示和测试计划,作为迈向敏捷研究和开发过程的下一步。作为该计划的核心,UniBw M 正在开展一项名为空间互联网无缝无线接入网络 (SeRANIS) 的技术演示项目。 SeRANIS 的目标是通过在低地球轨道上的小型卫星 ATHENE-1 进行大量创新实验,提供快速部署的多功能太空任务。 ATHENE-1 计划于 2025 年发射升空。 SeRANIS 为研究人员提供了一个科学环境,以便共同研究、评估、开发、验证和展示太空和地面的新方法和技术。科学领域包括空间通信,包括宽带通信和物联网、无线电科学、基于人工智能的自主性、全球导航卫星系统技术、光学和红外地球观测以及物体识别算法。此外,还将展示卫星运行的新概念、现代结构、监测系统状态的创新技术以及太空电力推进。本出版物介绍了 SeRANIS 项目。介绍了项目框架、进度安排、项目现状以及卫星平台的选择。此外,还对此次任务的科学研究领域、任务架构、基本设计和轨道选择进行了说明。