摘要:美国国防部使用受激辐射光放大(即激光或激光器)并非新鲜事,包括激光武器制导、激光辅助测量,甚至将激光用作武器(例如机载激光器)。激光用于电信支持也并非新鲜事。光纤中激光的使用已经颠覆了人们对通信带宽和吞吐量的认识。甚至在太空中使用激光也不再是新鲜事。激光正用于卫星到卫星的交联。激光通信可以使用数量级更少的功率传输数量级更多的数据,并且可以将发送和接收终端的暴露风险降至最低。新颖之处在于使用激光作为卫星系统地面部分和空间部分之间的上行链路和下行链路。更重要的是,使用激光在移动的地面部分(例如海上的船舶、飞行中的飞机)和地球同步卫星之间发送和接收数据正在蓬勃发展。本文探讨了使用激光作为连接地面和太空系统的卫星通信信号载体的技术成熟度。本文的目的是制定关键性能参数 (KPP),为美国国防部近期卫星采购和开发的初始能力文件 (ICD) 提供参考。通过了解使用激光而不是传统射频源作为卫星上行和下行信号载体的历史和技术挑战,本文建议美国国防部使用激光从需要保持低检测、拦截和利用概率的移动平台发送和接收高带宽、大吞吐量数据(例如,航母战斗群穿越敌对作战区域,无人机在敌方区域上空收集数据)。本文还打算确定商业部门的早期采用者领域以及可能适应使用激光进行传输和接收的领域。
iac-20,b4,3,6,x59219 Olfar的自主任务计划:Lunar轨道上的卫星群,用于射电射线天文学的Sung-Hoon Mok A *,Jian Guo A,Jian Guo A,Eberhard Gill A,Eberhard Gill A,Raj Thilak Rajan Ba Aerospace Engifetry of Aerospace Engineering(lr)(LR),LR),DELLE(LR),deflue(lr),deflue(lr)。荷兰2629 HS,s.mok@tudelft.nl; j.guo@tudelft.nl; e.k.a.gill@tudelft.nl b Faculty of Electrical Engineering, Mathematics & Computer Science (EWI), Delft University of Technology, Mekelweg 4, Delft, The Netherlands 2628 CD , r.t.rajan@tudelft.nl * Corresponding Author Abstract Orbiting Low Frequency Array for Radio Astronomy (OLFAR) is a radio astronomy mission that has been studied since 2010 by several荷兰大学和研究机构。该任务旨在通过在30 MHz频带以下的超低波长状态下收集宇宙信号来产生天空图。一颗卫星群,其中包括10多个配备了被动天线的卫星,将部署在可以最小化射频干扰的太空中,例如,在月球的远处。到目前为止,已经投入了一些研究来设计空间部分,其中包括有效载荷和平台元素。但是,尚未详细设计地面部分,尤其是任务计划系统。在本文中,根据当前的卫星设计提出了任务计划问题后,提出了OLFAR的系统任务计划方法。关键字:任务规划,射电天文学,卫星群,月球轨道,地面部门,自治1。任务控制元素(MCE)是地面部分元素之一,其主要功能是任务计划和计划。简介地面细分市场对于任务成功以及太空领域和发射部门[1]起着重要作用。它旨在在有限的资源和限制下安排几个任务;最终,为特定的计划范围生成时间表。任务计划算法(或不久的算法)通常可以分为三类:确定性精确算法,确定性近似算法和非确定性近似算法[2]。首先,确定性精确算法提供了一个精确的最佳解决方案,但需要三个方面的计算时间最长。例如,蛮力搜索需要在获得全球最佳解决方案之前列举所有可能的候选者。其次,确定性近似算法提供了一个亚最佳解决方案,其计算负担明显较小。它通常被称为启发式算法[3]。有例如贪婪算法和本地搜索算法。第三,非确定性近似算法也提供了次优的解决方案,通常称为元启发式算法或基于人群的算法。遗传算法和粒子群优化是众所周知的非确定性近似算法。但是,应注意的是,算法的定义和分类在文献中通常会有所不同。