具有可调机械性能的水凝胶已被设计为哺乳动物细胞的矩阵,并允许对细胞命运和功能的动态,机械响应的操纵。最近的研究产生水凝胶,其中生物感受器将光学信号转化为水凝胶力学的可逆变化。他们的初始应用提供了对机械生物学的重要见解,但更广泛的实现受到少量动态可寻址的限制。在此,通过开发具有可逆性调节的基于光感受器的水凝胶来克服这种限制,从≈800pa到SOL状态。水凝胶基于星形的聚乙烯乙二醇,用红色/远红色光感受器植物色素B(Phyb)或植物色素相互作用因子6(PIF6)功能化。用红光照明后,Phyb与PIF6异构二聚体,从而交联聚合物并导致凝胶化。然而,在用远红光照明时,蛋白质会解离并触发完整的凝胶到溶液过渡。全面表征水凝胶的光响应性机械性能,并将其用作可逆的细胞外基质,用于在微流体芯片中哺乳动物细胞的空间控制沉积。预计该技术将为细胞的站点和时间定位开放新的途径,并有助于克服空间限制。
所研究的 LCLC 是色甘酸二钠 (DSCG) 的水溶液,这种材料的商品名为“色甘酸”或“色甘酸钠”,是预防过敏和哮喘相关症状的药物中的活性成分。2 在水中,DSCG 分子面对面堆叠,使其疏水核心免受极性环境的影响。这种自组装产生细长的圆柱形聚集体,直径约 2 纳米,堆叠距离为 0.34 纳米,这使它们类似于双链 DNA (dsDNA)。然而,dsDNA 是手性的,而 DSCG 分子不是,并且没有沿聚集体轴的持续扭曲。这种分子尺度的差异在宏观层面上表现出色。在水溶液中,dsDNA 分子相对于彼此扭曲,形成所谓的胆甾型液晶,其宏观螺距在微米级。分子手性和宏观手性之间微妙的关系仍是当前研究的课题。3 相反,水中的非手性 DSCG 聚集体彼此平行排列,形成具有优选方向 n ̂ 的镜像对称向列液晶,该方向称为指向矢。手性分子的手性堆积随处可见,而非手性分子的手性堆积却很少见。非手性分子形成的液晶的宏观镜像对称性破缺需要特殊的空间限制。Charles-Victor Mauguin 在巴黎参加了 Pierre Curie 关于物理效应对称性的讲座后,萌生了探索晶体学和液晶的想法,并
理解对光的材料结构反应对于推进纳米级超快激光体积结构的加工分辨率至关重要。需要选择性热力学途径以最快的方式淬灭能量传输,并将过程限制在纳米长度上,绕过光学分辨率。在限制下量化材料动力学,可以原位访问瞬态局部温度和密度参数,因此成为理解过程的关键。我们使用时间分辨的定性和定量的光学相显微镜在整个物质α -Quartz中报告热力学状态的原位重建。助热动力学表明快速的空间限制的晶体至不汤过渡到热致密的熔融二氧化硅形式。致密化超过20%,在第一纳秒中,基质温度升至超过2,000 k。这种结构状态在数百纳秒中放松。光束到皮秒持续时间的分散和时间设计增加了空间限制,并触发了基于纳米挥手的极端纳米结构过程,该过程基于纳米挥手发生,在非变形材料中发生,在该材料中,低效率阶段降低了该过程的机械需求。在体积中获得了小于光波长的十分之一的处理特征量表。这允许在3D限制下进行结构和形态学的纳米级材料特征,可以设计光学材料。
由于该新闻通讯中的空间限制,标题一次列出。 LSU Health Shreveport很荣幸今年举办第40届年度南方生物医学工程会议。 Giovanni Solitro博士,骨科外科副教授兼生物力学教育实验室主任,曾担任该会议今年的计划主席。 南部生物医学工程会议(SBEC)系列是由来自学术界和工业的生物工程专业人士构想的,主要位于1982年美国南部。。标题一次列出。LSU Health Shreveport很荣幸今年举办第40届年度南方生物医学工程会议。Giovanni Solitro博士,骨科外科副教授兼生物力学教育实验室主任,曾担任该会议今年的计划主席。南部生物医学工程会议(SBEC)系列是由来自学术界和工业的生物工程专业人士构想的,主要位于1982年美国南部。第一次南方生物医学工程会议在LSUHS的什里夫波特(LSUHS)举行,当时称为LSU医疗中心,由SBEC指导委员会的创始人兼主席Subrata Saha博士组织。从那以后,它每年在美国南部的不同城市举行,并成长为经常吸引国际参与者的全球活动。SBEC通过强调年轻专业人士和高级学生的参与来实现特殊目的。成立的调查人员与学生在同一会议上介绍论文,鼓励高度专业水平,作为年轻调查员和学生的标准。
摘要:尽管可再生能源整合是国际政策中公认的要求,但能源系统仍然面临一些尚未解决的问题,包括生产的间歇性。为了解决这个问题,一个可行的解决方案可以包括在非高峰期储存多余的电力,然后在高峰负荷时段消耗。从分散的集中发电模式向涉及能源社区的分布式模式的转变表明需要管理的另一个方面:家庭应用系统的空间限制。压缩空气储能代表了一种有前途的电对电技术,可用于小规模能源整合。本研究提出在住宅建筑中应用气液储能系统 (GLES),利用光伏 (PV) 阵列产生的多余可再生能源。所提出的系统的性能通过模拟设备及其与建筑物负载曲线的耦合进行能量分析来评估,该系统的操作涉及通过矿物油操作的活塞压缩气态物质。使用原型实验活动的数据验证了存储的热力学模型。敏感性研究针对系统的特征(例如压缩率和容器尺寸),使我们能够比较吸收的光伏能量过剩、扩展阶段的建筑能源需求覆盖率以及每日周期的电气效率。获得的结果以及相关的经济分析用于量化所提出解决方案的市场潜力,该解决方案可作为住宅中传统电池的机械替代品。
家用热水供暖占多户建筑总能耗的 32%,是实现脱碳的重要机会。我们进行了广泛的市场评估,以了解和记录全美多户建筑家用热水电气化的主要技术和经济障碍。通过该计划,我们进行了 77 次访谈,以了解改造和新建场景中热水系统电气化的主要市场驱动因素和技术挑战。受访者涵盖了热水系统生态系统中的广泛利益相关者,包括供应商、制造商、设计师、业主、公用事业公司和开发商。本文记录了关键的访谈要点,包括广泛的市场障碍、技术挑战和热门技术属性列表,这些属性可以为电热水器研究、开发和部署工作提供相关的设计标准。在经济和能源效率方面,受访者绝大多数提到空间限制、冷空气排放以及缺乏关于分布式与集中式设计选择的明确指导是大规模采用电热水器的主要挑战。业主和开发商寻求占地面积最小的系统,以最大限度地提高可出租空间和利润。此外,分布式热泵解决方案应平衡管道成本,以减少冷排气进入空调区域。最后,市场需要明确的指导,以选择分布式还是中央电热水系统。
冻结是在海马介导的恐惧Engrage重新激活中通常检查的一种防御行为。这些细胞种群如何参与大脑并调节各种环境需求的冻结。为了解决这个问题,我们在雄性小鼠的三种不同背景下,在遗传上重新激活了海马齿状回的恐惧。我们发现,根据发生重新激活的上下文的大小,有差异的光引起的冻结量:在三个上下文中最大的空间限制中,小鼠表现出强大的光引起的冻结,但在最大的情况下没有。然后,我们利用图理论分析来识别在最小和最大的环境中Engram反应期间CFOS表达的脑部范围改变。我们的操纵引起了在对照条件下未观察到的区域间CFOS相关性。此外,在Engram重新激活网络中招募了跨越推定的“恐惧”和“防御”系统的区域。最后,我们将在小环境中的ENGRAM重新激活产生的网络与自然的恐惧记忆检索网络进行了比较。在这里,我们发现了共有的特征,例如模块化组成和集线器区域。通过识别和操纵支持记忆功能的电路及其相应的脑部活动模式,就可以解决介导记忆调节行为状态的能力的系统级生物学机制。
摘要 在脊椎动物胚胎发生过程中,胚层由分泌的 Nodal 信号形成图案。在经典模型中,Nodal 通过与由 I/II 型激活素受体 (Acvr) 和辅助受体 Tdgf1 组成的复合物结合来引发信号。然而,目前尚不清楚受体结合是否也会影响 Nodal 本身在胚胎中的分布,并且尚不清楚哪些假定的 Acvr 旁系同源物介导斑马鱼中的 Nodal 信号。在这里,我们表征了三种 I 型 (Acvr1) 和四种 II 型 (Acvr2) 同源物,并表明 - 除 Acvr1c 外 - 所有受体编码转录本都是母体沉积的,并且在斑马鱼胚胎发生过程中存在。我们生成了突变体并将它们与组合吗啉代敲低和 CRISPR F0 敲除 (KO) 方法一起使用以评估化合物的功能丧失表型。我们发现 Acvr2 同源物在形成早期斑马鱼胚胎的过程中,部分冗余地、部分独立于 Nodal 发挥作用,而 I 型受体 Acvr1b-a 和 Acvr1b-b 冗余地充当 Nodal 信号的主要介质。通过结合定量分析和表达操纵,我们发现反馈调节的 I 型受体和辅助受体可以直接影响 Nodal 的扩散和分布,为胚层模式形成过程中 Nodal 信号的空间限制提供了一种机制。
理解对光的材料结构反应对于推进纳米级超快激光体积结构的加工分辨率至关重要。需要选择性热力学途径以最快的方式淬灭能量传输,并将过程限制在纳米长度上,绕过光学分辨率。在限制下量化材料动力学,可以原位访问瞬态局部温度和密度参数,因此成为理解过程的关键。我们使用时间分辨的定性和定量的光学相显微镜在整个物质α -Quartz中报告热力学状态的原位重建。助热动力学表明快速的空间限制的晶体至不汤过渡到热致密的熔融二氧化硅形式。致密化超过20%,在第一纳秒中,基质温度升至超过2,000 k。这种结构状态在数百纳秒中放松。光束到皮秒持续时间的分散和时间设计增加了空间限制,并触发了基于纳米挥手的极端纳米结构过程,该过程基于纳米挥手发生,在非变形材料中发生,在该材料中,低效率阶段降低了该过程的机械需求。在体积中获得了小于光波长的十分之一的处理特征量表。这允许在3D限制下进行结构和形态学的纳米级材料特征,可以设计光学材料。
∗这篇评论致力于对我们的朋友,导师和合作者Alberto Alesina的记忆,其开拓性工作有助于建立了政治经济学的现代领域。Alberto提供了对该项目的反馈和评论,并促使我们探索了新的途径。我们感谢编辑史蒂文·杜拉夫(Steven Durlauf)和四名匿名裁判的有用评论和建议。我们还要感谢Bruno Caprettini,Ben Enke,Spyros Kosmidis,Kostas Matakos,Stelios Michalopoulos,Moises Naim,Thorsten Persson,Andrei Shleifer和Je e Q frieden有用的评论和建议。我们还感谢2020年NBER夏季研究所的参与者,全球劳工组织的网络研讨会,麻省理工学院(IAP),哈佛大学和瑞银 - 祖里(UBS-Zurich)的建议。Maxim Chupilkin,Nicolo Dalvit和Kuljeetsinh Nimbalkar提供了出色的研究帮助。该论文主要是在Covid-19危机之前写的。由于空间限制,新兴文献对民粹主义与Covid-19之间的关系的覆盖范围非常简短。所有错误都是我们自己的。†科学PO,巴黎和CEPR。经济学系,科学PO,28 Rue des Saints Peres,巴黎75007,法国。电子邮件:sergei.guriev@sciencespo.fr。网页:https://sites.google.com/site/sguriev/‡伦敦商学院和CEPR。伦敦商学院,经济部,伦敦伦敦市公园,NW1 4SA,英国。电子邮件:eliasp@london.edu。网页:https://sites.google.com/site/papaioannouelias/