到 2023 年底,全球联网物联网 (IoT) 设备数量约为 160 亿,比 2022 年增长 15%,到 2024 年底,这一数字预计将再增长 13%。将这些统计数据转化为经济价值时,到 2024 年底,物联网市场价值预计将达到 9480 亿美元 (USD),2024 年至 2029 年期间,该价值预计以 10.5% 的复合年增长率 (CAGR) 增长,预计到 2029 年市场价值将达到 15600 亿美元。地面物联网网络未覆盖远程用例,可以通过卫星物联网系统提供服务,从而扩展现有的物联网生态系统。一些主要的远程用例包括农业、林业、物流、跟踪、气候监测。
本报告由英国国防部资助的研究工程师 Christopher John Richardson 撰写,他是 2007 年至 2012 年南安普顿大学 EPSRC 工程博士学位课程的研究员。本论文是原始英国限制性论文的删节版。本论文中表达的观点以及任何建议均为作者的观点,不一定代表国防通信和信息系统学院或其任何工作人员的观点。因此,本报告不具有国防部文件的官方地位,不得以此身份引用。此外,此类观点不应被视为构成对英国国防部或英国女王陛下政府任何其他部门的事实准确性、意见、结论或建议的官方认可。
“弥合空隙”是国防部 (MoD) 赞助的一项研究,旨在确保跨域解决方案 (CDS);旨在发现和检查建立、操作和管理高度机密系统可能产生的影响和暴露影响,这些系统在操作上需要与低机密域、联盟网络以及可能的互联网进行多边、多层次的交互。信息保证 (IA) 是信任、维护和发展国防网络作战和信息利用能力的关键。国防部的网络支持能力 (NEC) 具有内在的、通常很复杂的相互依赖性、信息交互和知识交易,这些可能混乱、不安全、不可靠和不受信任。要理解、构建、确保 NEC 的企业架构安全、可靠并进行风险管理,其完整性和可靠性需要受过教育的 IA 从业人员和一个有信心、有文化的用户社区。div>
提及的所有商标均为 Huntsman Corporation 或其关联公司在一个或多个(但不是所有)国家/地区的财产或已获授权。本文所述产品(以下简称“产品”)的销售须遵守 Huntsman Advanced Materials LLC 或其适当关联公司的一般销售条款和条件,包括但不限于 Huntsman Advanced Materials (Europe) BVBA、Huntsman Advanced Materials Americas Inc.、Huntsman Advanced Materials (Hong Kong) Ltd. 或 Huntsman Advanced Materials (Guangdong) Ltd.(以下简称“Huntsman”)。以下内容取代买方文件。尽管据 Huntsman 所知,本出版物中的信息和建议在出版之日是准确的,但本出版物中包含的任何内容均不得解释为任何明示或暗示的陈述或保证,包括但不限于任何适销性或针对特定用途的适用性的保证、不侵犯任何知识产权的保证、或有关质量或与先前描述或样品的一致性的保证,并且买方承担因使用此类产品而导致的所有风险和责任,无论是单独使用还是与其他物质结合使用。本文所述的任何声明或建议均不得解释为关于任何产品是否适合买方或用户的特定用途的陈述,或侵犯任何专利或其他知识产权的诱因。数据和结果基于受控条件和/或实验室工作。买方有责任确定此类信息和建议的适用性以及任何产品是否适合其特定用途,并确保其对产品的预期用途不侵犯任何知识产权。产品可能具有或变得具有危险性。买方应 (i) 从亨斯迈获取材料安全数据表和技术数据表,其中包含有关产品危害和毒性的详细信息,以及产品的正确运输、处理和储存程序;(ii) 采取一切必要措施,充分告知、警告并让可能处理或接触产品的员工、代理商、直接和间接客户和承包商了解与产品有关的所有危害以及安全处理、使用、储存、运输和处置以及接触产品的正确程序;(iii) 遵守并确保可能处理或接触产品的员工、代理商、直接和间接客户和承包商遵守适用的材料安全数据表、技术数据表或亨斯迈提供的其他说明中包含的所有安全信息以及与产品的处理、使用、储存、分销和处置及接触有关的所有适用法律、法规和标准。请注意,产品可能因国家/地区而异。如果您有任何疑问,请联系您当地的亨斯迈代表。
摘要 我们开发了一种分析填充粒子的工具,以应对颗粒生物材料日益流行的趋势。颗粒水凝胶,包括微孔退火粒子 (MAP) 支架,是一类用于治疗应用的材料,因为它们具有独特的性质,包括粒子之间的微孔隙度。颗粒材料的微观结构很难研究,这导致该领域的许多人报告不可靠的空隙体积分数度量和/或 2D 切片近似“孔径”作为空隙空间的唯一特征。为此,我们创建了 LOVAMAP,这是一款定制软件,它结合了计算几何和图论技术,将空隙空间分割成 3-D 孔隙,这是开放空间的自然口袋。LOVAMAP 的 44 个支架特征为用户提供了描述支架内部和入口的定量概况。我们视觉丰富的输出解决了诸如空隙大小、形状、连通性、路径、各向同性/各向异性、配体可用性以及渗透/迁移限制等主题。使用 LOVAMAP,我们研究了 60 种不同类型的颗粒支架,包括具有相应细胞数据的真实 MAP 支架。我们使用高维分析来表明,我们软件的输出数据可用于对 3-D 孔隙类型进行分类,以及通过生成数字“指纹”来表征整个支架。结合细胞数据,LOVAMAP 揭示了神经球形成与支架空隙几何形状之间的关系。LOVAMAP 是一种支持技术,广泛应用于颗粒生物材料研究以及研究颗粒材料的所有领域。背景由于颗粒生物材料越来越受欢迎,填充颗粒及其周围的空隙(间隙空间、孔隙空间)是一个热门研究课题。颗粒材料在许多应用领域都很有吸引力,包括可注射组织模拟物和 3D 生物打印,因为它们具有独特的属性,例如剪切稀化行为、增加的材料表面积以及离散异质性的选项 1,2。由水凝胶微粒(微凝胶)制成的颗粒材料已用于促进多种疾病模型中的伤口愈合,包括中风 3、心肌梗死 4、皮肤伤口 5 和脊髓损伤 6。当微凝胶堆积在一起时,它们形成一种称为颗粒支架的 3D 结构,当颗粒支架的微凝胶连接在一起时,所得到的稳定结构称为微孔退火颗粒 (MAP) 支架 7。堆积的微凝胶在整个支架中形成空隙空间微孔,从而使细胞在颗粒之间畅通无阻地浸润和迁移。许多研究支持局部几何形状影响细胞行为的观点 8-13 ,并且在颗粒支架中,细胞感知到的局部几何形状是空隙空间的微观结构。因此,我们的目标是了解颗粒支架的内部几何形状,以改进材料设计。在生物材料领域,使用二维显微镜图像近似的孔隙率是最常见的支架空隙空间量化方法。孔隙率通常报告为孔隙体积分数或二维“孔”长度测量值的分布。我们之前已经揭示了报告孔隙率的这种近似值的细微差别 14 ,我们认为空隙体积分数和二维孔隙近似值不足以作为独立指标,因为它们忽略了三维空隙空间局部口袋中的复杂性和几何多样性。其他领域(数学、物理、地球科学、化学、农业等)对堆积颗粒进行了广泛的研究,而没有考虑空隙空间几何形状如何影响细胞的行为。研究通常侧重于粒子本身,其中已经开发出方法来识别粒子边界 15-17 或构建接触粒子的图形以研究粒子连通性、填充配置和应力链 18-23 。然而,这些结果未能表征空隙空间。一些以粒子为中心的研究包括有关空隙空间的信息,
法律信息 提及的所有商标均为 Huntsman Corporation 或其关联公司在一个或多个(但不是所有)国家/地区的财产或已获得授权。本文所述产品(“产品”)的销售受 Huntsman Advanced Materials LLC 或其适当关联公司的一般销售条款和条件的约束,包括但不限于 Huntsman Advanced Materials (Europe) BVBA、Huntsman Advanced Materials Americas Inc.、Huntsman Advanced Materials (Hong Kong) Ltd. 或 Huntsman Advanced Materials (Guangdong) Ltd.(“Huntsman”)。以下内容取代买方文件。尽管据 Huntsman 所知,本出版物中包含的信息和建议在出版之日是准确的,但本文所含内容不应被解释为任何明示或暗示的陈述或保证,包括但不限于任何适销性或特定用途适用性的保证、不侵犯任何知识产权的保证、或有关质量或与先前描述或样品的一致性的保证,并且买方承担因使用此类产品而导致的所有风险和责任,无论是单独使用还是与其他物质结合使用。此处的任何声明或建议均不得解释为关于任何产品是否适合买方或用户的特定应用的陈述,或侵犯任何专利或其他知识产权的诱因。数据和结果基于受控条件和/或实验室工作。买方负责确定此类信息和建议的适用性以及任何产品是否适合其自身特定用途,并确保其对产品的预期用途不侵犯任何知识产权。产品可能具有或变得具有危险性。请注意,产品可能因国家/地区而异。如有任何疑问,请联系您当地的亨斯迈代表。买方应 (i) 从亨斯迈获取材料安全数据表和技术数据表,其中包含有关产品危害和毒性的详细信息,以及产品的正确装运、处理和储存程序;(ii) 采取一切必要措施,充分告知、警告可能处理或接触产品的员工、代理、直接和间接客户和承包商,并使其熟悉与产品有关的所有危害以及安全处理、使用、储存、运输和处置及接触产品的正确程序;(iii) 遵守并确保可能处理或接触产品的员工、代理、直接和间接客户和承包商遵守适用的材料安全数据表、技术数据表或亨斯迈提供的其他说明中包含的所有安全信息,以及与产品的处理、使用、储存、分销、处置和接触有关的所有适用法律、法规和标准。
提及的所有商标均为亨斯迈公司或其关联公司在一个或多个(但不是所有)国家/地区的财产或已获授权。本文所述产品(以下简称“产品”)的销售须遵守亨斯迈先进材料有限责任公司或其适当关联公司的一般销售条款和条件,包括但不限于亨斯迈先进材料(欧洲)有限公司、亨斯迈先进材料美洲公司、亨斯迈先进材料(香港)有限公司或亨斯迈先进材料(广东)有限公司(以下简称“亨斯迈”)。以下内容取代买方文件。尽管据 Huntsman 所知,本出版物中的信息和建议在出版之日是准确的,但本出版物中包含的任何内容均不得解释为任何明示或暗示的陈述或保证,包括但不限于任何适销性或针对特定用途的适用性的保证、不侵犯任何知识产权的保证、或有关质量或与先前描述或样品的一致性的保证,并且买方承担因使用此类产品而导致的所有风险和责任,无论是单独使用还是与其他物质结合使用。本文所述的任何声明或建议均不得解释为关于任何产品是否适合买方或用户的特定用途的陈述,或侵犯任何专利或其他知识产权的诱因。数据和结果基于受控条件和/或实验室工作。买方有责任确定此类信息和建议的适用性以及任何产品是否适合其特定用途,并确保其对产品的预期用途不侵犯任何知识产权。产品可能具有或变得具有危险性。买方应 (i) 从亨斯迈获取材料安全数据表和技术数据表,其中包含有关产品危害和毒性的详细信息,以及产品的正确运输、处理和储存程序;(ii) 采取一切必要措施,充分告知、警告并让可能处理或接触产品的员工、代理商、直接和间接客户和承包商了解与产品有关的所有危害以及安全处理、使用、储存、运输和处置以及接触产品的正确程序;(iii) 遵守并确保可能处理或接触产品的员工、代理商、直接和间接客户和承包商遵守适用的材料安全数据表、技术数据表或亨斯迈提供的其他说明中包含的所有安全信息以及与产品的处理、使用、储存、分销和处置及接触有关的所有适用法律、法规和标准。请注意,产品可能因国家/地区而异。如果您有任何疑问,请联系您当地的亨斯迈代表。
摘要:本研究描述了共享经济在线运输中的机构空白。本文是疏远概念的发展,该概念最初是由马克思开发的,然后由Elster(1986)改编。先前进行的研究(Popescu et.al,2018; Fieseler等,2019; Vallas and Schor,2020)表明,零工经济体系似乎创造了就业和商机利用驾驶员(合作伙伴)资源。虽然算法系统的实施并不完全有利可图,但它甚至为合作伙伴造成了漏洞,但它仍然被视为至今一直运行的业务模型。研究人员使用一种混合方法,将定量数据与在线调查表和深入访谈结合在一起。结果表明,由于政府的规定,效率低下的执法,没有对合作伙伴的所有权保护,机构上空发生了。关键词:经济,机构空隙,运输。简介目前,共享经济业务的模式随着灵活性和新自由主义原则的应用而变得越来越普遍。本文将讨论印度尼西亚在线运输经济中机构空隙的实践。这种运输共享经济利用可用的资源,双方都达成协议,以分享各种服务的福利和优势。按定义共享经济是“'PEER-POER'公司,这些公司为了分发,共享和再利用商品和服务的目的连接人员(Ravanelle,2019:26)。这种共享经济的特征是:拥有广泛的市场基础,高影响力的资本,为使用资产和专业知识提供了各种机会;基于人群的网络不是一个集中式的等级机构,拥有个人和专业人士之间的B上级,以及在全职工人,自由职业者或企业家之间都不明确的上级(Sundarajan,2016:14)。也有更多的人专注于劳动过程问题和控制劳动。
免责声明 本文件为美国政府机构赞助工作的记录。美国政府、劳伦斯利弗莫尔国家安全有限责任公司及其任何雇员均不对所披露的任何信息、设备、产品或流程的准确性、完整性或实用性做任何明示或暗示的保证,也不承担任何法律责任或义务,也不表示其使用不会侵犯私有权利。本文以商品名、商标、制造商或其他方式提及任何特定商业产品、流程或服务并不一定构成或暗示美国政府或劳伦斯利弗莫尔国家安全有限责任公司对其的认可、推荐或支持。本文表达的作者观点和意见不一定代表或反映美国政府或劳伦斯利弗莫尔国家安全有限责任公司的观点和意见,不得用于广告或产品代言目的。
抽象的介孔二氧化硅是一种出色的低密度透明材料,其特征在于定义明确的纳米孔径。它有各种形态,包括整体,纳米颗粒和电影。该材料在众多技术应用中起着关键作用,无论是独立的还是混合复合材料的组成部分,是多种无机和有机材料范围的宿主。在合成路线中,我们考虑了Sol -Gel方法,因为它在产生纳米颗粒和散装中孔二氧化硅方面取得了巨大成功。本评论的重点是探索介孔二氧化硅和介孔二氧化硅的复合材料的光学性质,并深入研究如何在各个领域中利用中孔二氧化硅内的巨大空间:热和电气绝缘,光子学,环境设备,或用于药物和生物模拟的纳米型。这项全面的检查强调了介孔二氧化硅的多方面潜力,将其定位为在各个科学领域开发创新解决方案的关键参与者。