金属间化合物的生长和转变伴随着金/金属间化合物界面处键合内部以及键合外围的铝接触垫中空隙的形成。空隙是由于 Al 和 Au 原子扩散速率差异(Kirkendall 效应)形成的空位聚结而产生的。金属间化合物的形成使键合更坚固,但由于金属间化合物的体积变化,与 Au 和 Al 相比,键合更脆,机械应力更大 [1, 3]。由于金属间化合物的形成,引线键合的电阻仅增加几十毫欧姆 [1, 4]。在退化的初始阶段,空隙不会显著影响键合的机械强度和接触电阻。然而,长时间暴露在高温下会增加空洞,直至键合变得机械脆弱和/或电阻增加到可接受水平以上,从而导致设备故障。
沉积岩被广泛用作地质储层,并用作地理能源系统的宿主岩石。沉积岩的热性能,例如热有导度,热扩散率和体积特异性热量,在适合这些应用中起着至关重要的作用。这项研究使用扫描电子显微镜(SEM)分析研究了30种不同的砂岩样品的热性能。比较具有不同热性能的岩石样品的SEM图像,以分析纹理特性如何影响热性能。我们的结果表明,沉积岩的热性能高度取决于其质地。特别是,我们发现具有较高粗糙度的岩石倾向于表现出较低的导热率和热扩散率。毛孔和裂缝的存在影响了砂岩岩石检查的热特性。从图像中提取的平均表面粗糙度显示出强大的负电导率和扩散率(分别为−0.59和-0.6),而实验得出的是,由于其复合效应对热传递的效果可能会导致孔,裂纹和空隙区域的阴性负相关(-0.18和 - 0.17)的显而易见的负相关性(-0.18和 - 0.17)。空隙的大小,形状和分布会影响传热,互连的空隙为热流提供网络,而较小的空隙更有效地捕获热量。沉积岩的质地在确定其热性能中起着至关重要的作用。[doi:10.1115/1.4064030]该知识可用于优化对应用中砂岩储层的潜力的理解,例如地热能或热能存储。
6 能效解决方案 ................................................................................................................................................ 20 6.1 移动网络数据能效评估解决方案 .............................................................................................................. 20 6.1.1 NG-RAN 能效 ...................................................................................................................................... 20 6.1.2 网络切片能效 ...................................................................................................................................... 21 6.1.2.1 简介 ...................................................................................................................................................... 21 6.1.2.2 空隙 ...................................................................................................................................................... 22 6.1.2.3 空隙 ...................................................................................................................................................... 22 6.1.2.4 空隙 ...................................................................................................................................................... 22 6.1.2.5 空隙 ...................................................................................................................................................... 22 6.2 节能解决方案 ................................................................................................................................................ 22 6.2.1 概述 ...................................................................................................................................................... 22 6.2.2 集中节能解决方案 ................................................................................................................................ 23 6.2.2.1 程序 ................................................................................................................................................ 23 6.2.2.1.1 节能激活 ................................................................................................................................ 23 6.2.2.1.2 节能停用 ................................................................................................................................ 24 6.2.2.2 管理服务 ...................................................................................................................................... 24 6.2.2.2.1 MnS 组件类型 A ...................................................................................................................... 24 6.2.2.2.2 MnS 组件类型 B ...................................................................................................................... 25 6.2.2.2.2.1 目的和指标 .............................................................................................................................25 6.2.2.2.2.2 控制信息 ...................................................................................................................................... 25 6.2.2.2.3 MnS 组件类型 C ............................................................................................................................. 25 6.2.2.2.3.1 需要优化的参数 ............................................................................................................................. 25 6.2.2.2.3.2 性能测量 ............................................................................................................................. 25 6.2.3 分布式节能解决方案 ............................................................................................................................. 28 6.2.3.0 用于分布式 SON ES 解决方案的管理服务组件 ............................................................................. 28 6.2.3.1 管理服务 ............................................................................................................................................. 28 6.2.3.1.1 MnS 组件类型 A ............................................................................................................................. 28 6.2.3.1.2 MnS 组件类型 B ............................................................................................................................. 28 6.2.3.1.2.1 目的和指标 ...................................................................................................................................... 28 6.2.3.1.2.2 控制信息 ...................................................................................................................................... 29 6.2.3.1.3 MnS 组分类型 C ............................................................................................................................. 29 6.2.3.1.3.1 需要优化的参数 ............................................................................................................................. 29 6.2.3.1.3.2 性能测量 ...................................................................................................................................... 29 6.2.3.2 程序 ...................................................................................................................................................... 32 6.2.3.2.1 节能激活 ............................................................................................................................................. 32 6.2.3.2.2 节能停用 ............................................................................................................................................. 32 6.3 能耗解决方案 ............................................................................................................................................. 33 6.3.1 PNF 能耗解决方案........................................................................................................... 33 6.3.2 VNF/VNFC 能耗解决方案 .........................................................................................................33 6.3.2.1 简介 ................................................................................................................................................ 33 6.3.2.2 基于 VM 的 VNF/VNFC 解决方案 ........................................................................................................ 34 6.3.2.2.1 基于虚拟计算资源 vCPU 使用率的解决方案 ................................................................................ 34 6.4 意图驱动的 RAN 节能解决方案 ............................................................................................................. 35
在 SEM 过程中,样品会发射出特征 X 射线。我们可以使用能量色散 X 射线光谱仪 (EDS 或 EDX) 来检测特征 X 射线,以进一步表征元素成分。当主束电子撞击内壳电子时,会产生一个空隙,来自原子较高壳层的电子会落下以填补空隙。这种电子落下会释放原子以 X 射线形式发射的能量。特征 X 射线的能量模式取决于原子中电子壳层之间的能级差异,而每种原子的能级差异都是独一无二的。该信号可以从材料深处逸出,从而可以对 100 纳米到微米深度之间的成分进行调查。
熔融沉积成型 (FDM),也称为熔融长丝制造 (FFF),是增材制造领域最成熟的技术之一,由于使用和维护成本低 [1],在低熔点聚合物中广受欢迎。进料材料以长丝形式通过加热喷嘴进料,并逐层沉积在表面上。商用热塑性塑料如丙烯腈丁二烯苯乙烯 (ABS)、聚碳酸酯 (PC)、尼龙、聚乳酸 (PLA) 及其组合经常用于生产 FDM 部件 [2]。虽然可以实现高度复杂的几何形状,但这会引发相对于块体材料的三种主要强度降低机制 [3]:(i) 由于空隙导致横截面积减小。仅此一项就已证明对抗拉强度有巨大影响 [4]。(ii) 空隙引起的应力集中。基于这一观察,Xu 和 Leguillon [5] 提出了双缺口空隙模型来解释 3D 打印聚合物的各向异性拉伸强度。(iii)聚合物链的不完全相互扩散。与几何方面无关,这会降低材料本身在细丝边界处的强度 [1] 。这三种现象由大量工艺参数控制,这些参数的强大影响和复杂相互作用超出了我们目前的知识范围,是一个活跃的研究领域。Cuan-Urquizo 等人 [6] 确定了两大类参数,即制造参数(例如喷嘴温度和打印速度)以及结构参数,
摘要 学生与校园之间存在内在的亲密关系,因为有些学生在校园里进行活动。公共空间是学生在活动中使用最广泛的空间。因此,校园公共空间的可用性非常必要。校园公共空间的数量和质量是塑造学生行为的主要指标。公共空间的目的是从学院方面支持学生活动和软技能活动。而建筑与设计学院的公共空间在质量和数量方面都无法为学生提供最大的容器。本研究尝试使用社会瓣和社会瓣参数来识别公共空间的模式。社会瓣和社会瓣的概念是测试公共空间质量的重要指标。理想情况下,良好的公共空间以社会瓣为主导,因为它优先考虑社交和讨论活动。本研究使用行为映射的建筑方法,随后促进现场观察过程。希望以后获得的知识可以为未来公共空间质量的设计贡献想法。关键词:行为、公共空间、隔空、隔瓣、学生。
每个样品的近表面空隙数 ................................................................................................................ 19 薄几何形状(样品 A) .............................................................................................................. 20 尖锐特征(样品 B) .............................................................................................................. 24 具有增加的 IHTT 的尖锐特征(样品 C) ............................................................................. 28
目的:葡萄糖共转运蛋白-2(SGLT-2)抑制剂主要是2型糖尿病患者的首选。本文的目的是阐明使用SGLT-2抑制剂对患者缺乏习惯,睡眠和生活质量的影响。方法:我们的研究涉及患有SGLT2抑制剂的2型糖尿病患者添加到目前的治疗中。在启动治疗之前以及随后的第一和第3个月之前,评估了昼夜排尿,较低的尿路症状,睡眠和生活质量的频率。结果:研究包括38名女性和34名男性。在添加了SGLT-2抑制剂后的第三个月,HBA1C,甘油三酸酯和微氧蛋白水平显着降低(P <0.05)。空隙频率没有增加(白天/夜晚),评估较低的尿路症状没有差异,但是尿流仪的空隙量增加。当检查了简短的Form-36(SF-36)量表时,身体功能会显着改善,这是一个子参数之一(P = 0.01)。最大的因素是HBA1C的改善。结论:本文表明,SGLT-2抑制剂不会增加空隙频率,也不会导致较低的尿路症状增加。关键词:钠 - 葡萄糖共骨菌2抑制剂,较低的尿路症状,夜尿,生活质量,2型糖尿病。