Sara Gouarderes、Layal Doumard、Patricia Vicendo、Anne-Françoise Mingotaud、Marie-Pierre Rols 等人。电穿孔不会直接影响人类真皮成纤维细胞的增殖和迁移特性,而是通过分泌组间接影响。生物电化学,2020 年,134,第 107531 页。�10.1016/j.bioelechem.2020.107531�。�hal-02560967�
受精卵电穿孔是小鼠中 CRISPR/Cas9 介导的基因组编辑中复杂的原核注射程序的快速替代方法。然而,目前的电穿孔方案要么需要投资专门的电穿孔仪,要么需要对受精卵进行腐蚀性预处理,这会损害胚胎的活力。在这里,我们描述了一种易于适应的方法,通过使用带有合成 CRISPR/Cas9 组件的普通电穿孔仪对完整的受精卵进行电穿孔,高效地在小鼠中引入特定突变,并且技术要求最低。该方案可有效处理来自各种遗传背景的受精卵,并与其他 CRISPR 核酸酶(如 Cas12a)兼容。
位于小鼠大脑皮层中的原生质星形胶质细胞(PRA)紧密并置,在成人阶段形成了明显连续的三维基质。到目前为止,没有免疫染色策略可以将它们单一单一的策略和在成熟动物和皮质生成过程中的形态进行分割。皮质PRA起源于背胸膜中的祖细胞,可以轻松地使用整合载体的子宫电穿孔来靶向。这里提出了一项方案,该方案将这些细胞用可抑制基因组融合的颜色(魔术)标记策略标记,该策略依赖于PiggyBac/ tol2换位和CRE/ LOX重组以随机表达明显的荧光蛋白(蓝色,氰基,黄色和红色),以特定于特异性的亚细胞界面。这种多色命运映射策略使在胶片发生开始之前与颜色标记物的结合可以标记附近的皮质祖细胞,并跟踪其后代,包括星形胶质细胞,从胚胎到各个细胞水平的成人阶段。半parse标记通过调整电穿孔矢量的浓度和颜色对比度的浓度,该颜色可通过多种基因组整合的颜色标记(魔术标记或MM)提供,使星体胶质细胞个性化并将其领土和复杂的形态单一单一单一单一单独化。是一个全面的实验工作流程,包括电穿孔程序的详细信息,通过共聚焦显微镜进行多通道图像堆栈以及计算机辅助的三维分割,这将使实验者能够评估单个PRA的体积和形态。总而言之,魔术标记的电穿孔提供了一种方便的方法,可以单独标记许多星形胶质细胞并在不同的发育阶段访问其解剖特征。该技术对于分析各种小鼠模型中的皮质星形胶质细胞形态特性将是有用的,而无需诉诸于具有转基因报告基因的复杂杂交。
背景和研究的目的是嗜酸性食管炎(EOE)是一种慢性免疫疾病,症状增加。它是由食管功能障碍的症状在临床上定义的,而在组织学上是由食管粘膜的嗜酸性多核细胞浸润。症状不是特异性的,包括胃食管反流疾病(GERD),吞咽困难,呕吐或饮食阻塞。粘膜的慢性炎症可能导致造成影响的食管腔的变窄。提取程序可能会通过解剖和穿孔而复杂。食管罕见的自发破裂也被称为Boerhaave综合征。我们报告了EOE儿童食管穿孔的五例,三例自发破裂,内窥镜检查后两例。在医疗治疗下,进化是有利的。
抽象背景/目标:胃切除术通常是针对接受治疗意图治疗的患者进行穿孔胃癌的。然而,胃切除术不是一种治愈方法,而是排除口服摄入量,并且可能会阻碍转移性疾病患者的姑息化疗。本研究评估了包括腹膜灌洗和修复手术的“胃 - 保存策略”的可行性,用于管理远处转移患者的胃癌穿孔。患者和方法:我们回顾性地审查了2013年至2021年在我们医院接受手术治疗的胃癌患者的病历。对经过腹膜胃癌进行腹膜灌洗和维修手术的患者的临床课程进行了远距离转移的审查,以评估术后结果。结果:在研究期间,有3,862名患者接受了自由基胃切除术。此外,由于胃穿孔而进行的9名IV期胃癌患者进行了远处转移。在接受紧急手术的九名患者中,七名患者接受了腹膜灌洗和修复手术,两名仅接受腹膜灌洗。未观察到继发性泄漏的病例。七名患者(78%)有一个良好的术后课程,包括恢复餐和延续化疗。其余两个死于败血症。中位总生存时间是手术距离手术和姑息化疗启动12个月的时间数月。结论:在IV期胃癌患者的远处转移的患者中,针对穿孔胃癌治疗的“胃 - 保存策略”是安全的,可以继续口服摄入量和姑息化疗。关键字:胃癌,远处转移,穿孔,胃 - 保存。
摘要。人工神经网络的神经元最初是在人们对生物神经元的了解远不如今天时发明的。我们的工作探索了对核心神经元单元的修改,使其与生物神经元更加平行。修改是基于这样的认识:生物树突不仅仅是被动激活漏斗,而且在将激活传递到细胞体时还会计算复杂的非线性函数。本文探讨了一种新颖的“穿孔”反向传播系统,该系统使深度神经网络的人工神经元能够更好地编码它们在原始架构中编码的相同特征。在初始网络训练阶段之后,将额外的“树突节点”添加到网络中,并分别进行训练,目标是:将它们的输出与原始神经元的剩余误差相关联。然后冻结训练后的树突节点,并进一步训练原始神经元,现在要考虑树突节点提供的额外误差信号。训练原始神经元然后添加和训练树突节点的循环可以重复多次,直到达到令人满意的性能。我们的算法已成功添加到跨多个领域的现代最先进的 PyTorch 网络中,提高了原始精度,并允许在不损失精度的情况下显着压缩模型。关键词:人工神经网络、深度学习、语音处理、药物发现、股票预测、机器学习、树突状积分、级联相关、人工神经发生
通过应用适当的振幅和参数的电场脉冲来提高膜渗透率。此方法称为“电抛液”或“电穿孔”(EP)。使用EP应用,在正常细胞条件下无法穿越膜的颗粒可以通过膜。强烈和短期的电脉冲导致细胞膜上的跨膜电位(TMP)上升(1-5)。当TMP达到临界值时,水孔的形成将允许通过膜进行分子过渡。尽管无法完全表达分子水平的精确机制,但在观察到最高TMP的膜区域已经证明了分子流量(6-8)。EP的有效性取决于应用的电脉冲参数(持续时间,强度脉冲形状和脉冲数)。基于这些参数的影响,EP可以是可逆的或不可逆的(9-11)。可逆EP在医学和生物技术领域中有许多应用,包括电疗疗法和电化学疗法(ECT)(5,12)。不可逆的EP用于肿瘤消融(由于其非热作用)和灭菌目的(11-13)。
说明HLA-A/B/C敲除电穿孔套件适用于通过电穿孔的细胞系和原代T细胞工程。该套件既包含Cas9酶(链球菌)和靶向HLA-A/B/C(人白细胞抗原)的GRNA。该套件足以设计高达500万个原代T细胞。背景HLA(人白细胞抗原)-a,b和c是MHC的三种主要类型(主要的组织相容性复合物)1类跨膜蛋白。它们与β2微球蛋白蛋白(由B2M基因编码)形成异二聚体。MHC 1类分子表现出短多肽,通常在长7-11个氨基酸之间,以识别为“自我”或“非自身”的免疫系统。HLA-C存在于所有细胞中,并且由于HLA-C基因的多样性而作为几种单倍型存在。c*08:02代表一种这样的单倍型。HLA I类将新抗原衍生的肽呈现到细胞表面,从而通过TCR(T细胞受体)识别出T细胞的识别。 癌症免疫疗法一直在使用该机制,方法是表达能够识别特定癌症免疫原子的TCR。 在2016年,HLA-C*08:02限制性TIL(肿瘤浸润淋巴细胞)在肺癌中靶向KRAS(Kirsten大鼠肉瘤病毒)G12D突变,导致阳性结果。 在转移性胰腺癌患者中采用了类似的方法,并导致该疾病的消退。 HLA-C*08:02限制性TIL对其他新抗原的TCR的研究可能对癌症治疗有益。 应用程序HLA I类将新抗原衍生的肽呈现到细胞表面,从而通过TCR(T细胞受体)识别出T细胞的识别。癌症免疫疗法一直在使用该机制,方法是表达能够识别特定癌症免疫原子的TCR。在2016年,HLA-C*08:02限制性TIL(肿瘤浸润淋巴细胞)在肺癌中靶向KRAS(Kirsten大鼠肉瘤病毒)G12D突变,导致阳性结果。在转移性胰腺癌患者中采用了类似的方法,并导致该疾病的消退。HLA-C*08:02限制性TIL对其他新抗原的TCR的研究可能对癌症治疗有益。应用程序K562细胞是HLA I和II类负的,使其成为引入和研究特定单倍型响应的理想细胞模型。hla在供体细胞和个体之间的不匹配可以导致免疫排斥反应,一种选择是敲除内源性HLA,从而使细胞被更广泛地普遍使用。
ire是一种方法,其中EP通过60-100高压(1.5-3 kV)80-100 µs的爆发来诱导渗透细胞死亡。导致这种渗透死亡的细胞机制是由反应性氧的激活,这是由于跨膜离子流动改变导致的细胞内钙的过度蓄积。IRE触发的细胞死亡发生,没有大量的热变暖或热诱导的Tis-Sue损伤(6)。GET方法论是基于产生能够使遗传颗粒(例如质粒)跨越细胞膜的微孔的,以引入负责诱导免疫系统或靶细胞死亡的基因的表达(9)。ect是一种方法,在这种方法中,通过在肿瘤组织上应用高压电场在局部或系统上的施用,以促进肿瘤细胞对抗肿瘤药物的渗透率(10)。已经提出了几种不同的电程。在图1a,b,c中描绘了最多采用的ECT电场。最常用的细胞毒性化学治疗剂是博来霉素,同样