前四段中有关引信的历史摘自:电子邮件,Steven L. Smith, AFRL/MNMF,发给 Kevin M. Rusnak, AFRL/HO, “FW: 历史论文后续”,19 Jan 06,附有未发表的论文,Steven L. Smith, AFRL/MNMF, Richard Mabry, AFRL/MNMF,以及 Jefferson K. Oliver, AFRL/MNMF, “基于加速度计的穿透引信”,nd
对更高能量密度的不懈追求对电池安全性提出了挑战。[8,9] 更薄的隔膜会增加穿孔的危险,而锂金属的使用则有可能引起枝晶穿透和短路。发生短路时,快速自放电产生的大电流通过低电阻电子通路产生焦耳热,使隔膜和电极材料的温度达到击穿点(150-250°C),[10] 引发一系列放热反应和热失控。[11,12] 内部短路可能是由机械变形(例如在钉刺试验期间 [13,14] )和过度充电等外部原因引起的,但也可能由于没有明显的外部原因而发生,例如最近发生的停放电动汽车自燃事件。[15] 推测的机制包括电池中导电丝的生长,最终会穿透隔膜并使电池短路。 [16] 目前已开发出各种防止和管理锂离子电池热失控的方法,包括压力释放孔、[17] 防止过度充电的先进电池管理系统、设计为断裂以便电子隔离短路的集电器,[18] 以及阻燃添加剂。[19]
使用超声检查方法用于异常和锂离子电池中的缺陷检测一直是研究人员近年来的一个令人兴奋的主题。用于电池检查的超声波技术主要集中于监视电池状态,识别内部缺陷,并检测诸如锂电池,气体产生和扩展,润湿的一致性以及热失控等问题。该技术通常采用脉搏回波方法,使用触点或沉浸式设置在电池中进行内部缺陷检测。随着超声技术的不断发展,预计将在锂电池检查的各个方面应用越来越多的超声技术。右审讯频率的使用取决于检查的目标。例如,当电池内部有大量阻塞信号的大气体时,使用低频检查。渗透量可能表明细胞的气体程度如何。通过传输信号用于识别与电池内部缺陷相关的音速或穿透量。另一方面,反射信号主要用于定位内部缺陷。当需要单向穿透(例如厚棱镜细胞)并在传感器和细胞之间具有距离时,浸入设置很有用。接触测试通常也用于SOC或SOH估计。
通过部署主动脉内移植物的内移植物和/或小动脉(IES)的血管内修复,包括内部内移植物,包括预处理大小和设备的选择,所有非选择性导管(S),所有相关的放射学监督和解释,所有相关的放射性监督和所有相关的主动移植物均放置在主动脉中(s)从肾动脉的水平进行的血管成形术/支架置于叶叶叶。进行破裂,包括临时主动脉和/或iliac气球阻塞(例如,用于动脉瘤,伪动脉瘤,解剖,穿透性溃疡,创伤性破坏))通过部署主动脉内移植物的内移植物和/或小动脉(IES)的血管内修复,包括内部内移植物,包括预处理大小和设备的选择,所有非选择性导管(S),所有相关的放射学监督和解释,所有相关的放射性监督和所有相关的主动移植物均放置在主动脉中(s)从肾动脉的水平进行的血管成形术/支架置于叶叶叶。进行破裂,包括临时主动脉和/或iliac气球阻塞(例如,用于动脉瘤,伪动脉瘤,解剖,穿透性溃疡,创伤性破坏)
通过部署主动脉内移植物的内移植物和/或小动脉(IES)的血管内修复,包括内部内移植物,包括预处理大小和设备的选择,所有非选择性导管(S),所有相关的放射学监督和解释,所有相关的放射性监督和所有相关的主动移植物均放置在主动脉中(s)从肾动脉的水平进行的血管成形术/支架置于叶叶叶。进行破裂,包括临时主动脉和/或iliac气球阻塞(例如,用于动脉瘤,伪动脉瘤,解剖,穿透性溃疡,创伤性破坏))通过部署主动脉内移植物的内移植物和/或小动脉(IES)的血管内修复,包括内部内移植物,包括预处理大小和设备的选择,所有非选择性导管(S),所有相关的放射学监督和解释,所有相关的放射性监督和所有相关的主动移植物均放置在主动脉中(s)从肾动脉的水平进行的血管成形术/支架置于叶叶叶。进行破裂,包括临时主动脉和/或iliac气球阻塞(例如,用于动脉瘤,伪动脉瘤,解剖,穿透性溃疡,创伤性破坏)
5.1动机的主要好处是: - 正式化的保质期最多可以持续24个月 - 无论如何,建议是一般的指示,而主要的MBB鲁棒性证明仍然是HIC(湿度指标)的控制。如果HIC没有改变颜色,这只是证明了该袋子仍然处于良好状态,并且正在保护装置免受可能的水分穿透。5.2客户福利制造灵活性
第一篇涉及作者对焊接支架试件疲劳试验的描述。他们报告说,试验表现出意想不到的行为,即试件在裂纹穿透厚度之前突然失效,并且根据试件边缘附近裂纹平面的应变计测量,净截面应力估计低于或非常接近屈服强度。对试件配置的检查表明,当支架焊接在缺口对面时,无论使用何种类型或厚度的材料,都会出现这种行为。裂纹似乎不太可能围绕相对较厚的焊接支架扩展,从而穿透另一侧,然后才扩展到主受拉构件的净截面足够远,从而因净截面屈服而失效。虽然参考的应变计测量结果表明破坏应力低于屈服应力,但根据本文图15 和提供的总应力数据对剩余净截面应力进行简单计算,结果表明实际净截面应力远高于屈服强度,可能超过 30 ksi。对样本配置进行更详细的有限元分析证实了这一结论。应变计测量结果似乎与其他信息不一致,可能是因为它们的位置或测量能力。
对更高能量密度的不懈追求对电池安全性提出了挑战。[8,9] 更薄的隔膜会增加穿孔的危险,而锂金属的使用则有可能引起枝晶穿透和短路。发生短路时,快速自放电产生的大电流通过低电阻电子通路产生焦耳热,使隔膜和电极材料的温度达到击穿点(150-250°C),[10] 引发一系列放热反应和热失控。[11,12] 内部短路可能是由机械变形(例如在钉刺试验期间 [13,14] )和过度充电等外部原因引起的,但也可能由于没有明显的外部原因而发生,例如最近发生的停放电动汽车自燃事件。[15] 推测的机制包括电池中导电丝的生长,最终会穿透隔膜并使电池短路。 [16] 目前已开发出各种防止和管理锂离子电池热失控的方法,包括压力释放孔、[17] 防止过度充电的先进电池管理系统、设计为断裂以便电子隔离短路的集电器,[18] 以及阻燃添加剂。[19]
警方有一种称为 LRAD 的设备。这是一种远程通信设备,购买它是为了支持警察谈判小组 (PNT)。它是一种便携式设备,允许工作人员在背景噪音和长距离(最远 600 米)上广播语音信息。它广播定向声音以进行有针对性的通信。使用 LRAD 的语音广播可以穿透建筑物和车辆,确保警方发出的任何警告或命令都能被清楚地听到和理解。
Tri-Lock FS™ HEPA 外壳在外壳内部具有连续周边刀刃,该刀刃与过滤器表面充满凝胶的周边通道相匹配,从而在两个元件之间形成密封。手动锁定机制引导并固定过滤器进入刀刃——穿透凝胶并在过滤器表面形成可靠密封。锁定机制的设计使得如果过滤器和刀刃未正确对齐,门将无法关闭。