模块 II(10 小时) 介电特性:简介、介电常数、介电极化(极化率)、介电体中的不同类型极化(电子、离子、取向和空间电荷极化、内部场(无推导)、克劳修斯-莫索蒂方程、介电损耗、击穿和强度、介电材料的应用 磁性:简介、基本定义、玻尔磁子、磁性材料的分类- 铁磁性、顺磁性、铁磁性、反铁磁性和亚铁磁性,磁滞曲线- 软磁和硬磁材料,磁性材料的应用 超导性:一般特性、迈森效应、同位素效应、超导体中的能隙、相干长度、临界磁场、磁通量化穿透深度、直流和交流约瑟夫森效应 I 型和 II 型超导体、BCS 理论、伦敦方程、超导体的应用
立体定向脑电图 (sEEG) 利用局部穿透深度电极来测量脑电生理活动。它最常用于识别难治性癫痫的致痫区。植入的电极通常提供一组独特脑区域的稀疏采样,包括海马体、杏仁核和岛叶等较深的脑结构,而这些结构无法通过皮层脑电图 (ECoG) 等浅层测量方式捕捉到。尽管临床应用重叠,且脑机接口 (BCI) 的 ECoG 解码方面也取得了最新进展,但迄今为止,sEEG 在 BCI 解码方面受到的关注相对较少。此外,相关深部脑刺激 (DBS) 植入物的成功预示着长期 sEEG 应用的潜力。本文概述了 sEEG 技术、BCI 相关研究以及 sEEG 在长期 BCI 应用中的未来发展方向。
用薄金属膜制成的超电流晶体管是下一代高性能计算平台的一个有前途的选择。尽管进行了广泛的研究,但对于外部直流电场如何抑制薄膜中的超导性仍未完全定量显微镜解释。这项研究旨在根据Eliashberg的理论提供对超构度作为膜厚度的函数的定量描述。计算考虑了电场的静电,其在膜中的逼真的穿透深度以及对库珀对的影响,根据BCS理论,该电场对库珀对的影响被描述为标准的S波结合状态。估计表明,需要大约10 8 V/m的外部电场才能抑制10-30 nm厚的膜中的超导性,这与实验观测一致。最终,当将外部电场应用于膜表面时,该研究提供了“通过设计材料”指南来抑制超电流。此外,提出的框架很容易扩展,以研究超薄膜的相同效果。
摘要:本文报告了通过无催化剂化学气相沉积 (CVD) 生长法合成 InSe 纳米带。当 InSe 纳米带的厚度从 562 nm 减小到 165 nm 时,峰值光响应发生了显著的蓝移。Silvaco Technology 计算机辅助设计 (TCAD) 模拟表明,这种光谱响应的变化应归因于 InSe 的波长相关吸收系数,其中较短波长的入射光将在表面附近被吸收,而较长波长的光将具有更大的穿透深度,导致较厚的纳米带器件的吸收边缘发生红移。基于上述理论,通过调控纳米带的厚度,实现了对蓝光(450 nm)、绿光(530 nm)、红光(660 nm)入射光敏感的三种光电探测器,可以实现紫色“H”图案的光谱重建,表明二维层状半导体在全色成像中的潜在应用。
摘要:本研究调查了原料丝(此处称为热丝)的电阻预热对双相不锈钢激光定向能量沉积稳定性的影响。沉积过程中在线获取的数据以及金相研究揭示了工艺特性及其稳定性窗口。在线数据(例如预热电路中的电信号和从工艺交互区侧视捕获的图像)提供了有关熔融丝和熔池之间金属转移的见解。结果表明,工艺特性(如激光丝和丝熔池相互作用)随丝预热水平而变化。此外,应用两个独立的能源(激光束和电能)可以微调热输入并增加穿透深度,而对焊珠的高度和宽度影响很小。这可以提高工艺稳定性并消除未熔合缺陷。在热丝电路中测量的电信号指示工艺稳定性,因此电阻预热可用于工艺监控。结论是电阻预热为控制激光导向能量沉积的稳定性和热输入提供了额外的手段。
摘要:钛合金具有重量轻、强度高、耐热腐蚀等优点,但其优异的力学性能与其组织结构密切相关,在焊接、表面强化、修复等加工过程中需要采用创新的加工方式来保证晶体组织的细化,以满足强度提高、力学性能提高和整体强度提高的要求。通过对Ti-6Al-4V合金表面进行激光直接熔化,比较了连续激光与调制激光模式下熔池的差异。在相同功率下,激光熔池热影响区可缩小为连续激光的1/3。连续激光在高能量密度的作用下可以获得深熔池。不同的熔体穿透深度会导致拉伸性能变化很大。在高频(20 kHz)调制激光作用下可以获得高密度、细晶粒的熔池。包含重熔区的不同熔深深度之间的拉伸试样的力学性能与基体接近,研究结论可为激光重熔加工技术的开发提供技术支持。
* 通讯作者:ivan.bunaziv@ntnu.no 摘要 近年来,激光电弧混合焊接 (LAHW) 在造船和石油天然气工业中的应用越来越广泛。与传统的电弧焊接工艺相比,它具有许多优势,因此广受欢迎。激光束源可用于实现更高的穿透深度。通过电弧源将填充焊丝添加到工艺区域,可以提高机械性能,例如在低温下具有更高的韧性。因此,LAHW 是一种有前途的低温服务工艺。由于深而窄的接头中整个焊缝金属中填充焊丝分布不均匀,导致工艺稳定性和机械性能下降,因此 LAHW 的适用性受到关注。这会导致焊缝根部的机械性能下降以及凝固裂纹问题。根部的快速冷却速度会产生硬而脆的微观成分,从而降低低温韧性。数值模拟和实验观察表明,增加激光束的热输入是降低冷却速度的有效方法,例如也可以通过预热来实现。关键词:激光束;复合焊接;微观组织;韧性;数值模拟 1. 引言
曲线)。相关的声感应电压信号显示为绿点,即所谓的 AE 命中。每个命中的峰值幅度以 dB AE 为单位绘制(参考值 1 μV)。在给定的示例中,时间相关的力曲线在接触力高达约 230 mN 时是非线性的,同时在阈值电压 U th 23 dB AE 以上测量到大量 AE 命中。这种影响是由于压头随着接触载荷的增加而穿透 Al-Cu 顶层,该顶层发生塑性变形并且压痕深度不断增加(见图 7a)。AE 命中的数量及其峰值幅度随着穿透深度的增加而减少。在接触力超过 230 mN 时,只会发生孤立的低幅度命中。在 Al-Cu 顶层上压痕时 SiO x 层开始开裂,接触力 F c 为 367 mN,峰值幅度 A peak 为 55.9 dB AE 。图 6b 绘制了裂纹诱发的 AE 冲击的示例性波信号及其整个信号持续时间。[1]
超导体中的涡旋可以帮助识别出现现象,但是涡流的基本方面(例如它们的熵)仍然很众所周知。在这里,我们通过测量磁耐药性和对超薄纤维(≤2个单位细胞)的磁性抗性和Nernst效应,研究了不足的BI 2 SR 2 CACU 2 CACU 2 O 8+X中的涡旋熵。我们从具有不同掺杂水平的样品上的磁传输测量中提取伦敦穿透深度。它揭示了超级流动相位刚度ρs与超级传导过渡温度t c线性缩放,直至极不足的情况。在相同批次的超薄纤维上,我们通过芯片温度计测量Nern的效果。一起,我们获得了涡旋熵,并发现它用t c或ρs呈指数衰减。我们进一步分析了高斯超导波动框架中t c上方的nernst信号。在二维极限中电气和热电测量的组合提供了对高温超导性的新见解。